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Abstract

Consider the Cauchy problems for an n-dimensional nonlinear system of
fluid dynamics equations. The main purpose of this paper is to improve the
Fourier splitting method to accomplish the decay estimates with sharp rates
of the global weak solutions of the Cauchy problems. We will couple togeth-
er the elementary uniform energy estimates of the global weak solutions and
a well known Gronwall’s inequality to improve the Fourier splitting method.
This method was initiated by Maria Schonbek in the 1980’s to study the op-
timal long time asymptotic behaviours of the global weak solutions of the
nonlinear system of fluid dynamics equations. As applications, the decay esti-
mates with sharp rates of the global weak solutions of the Cauchy problems for
n-dimensional incompressible Navier-Stokes equations, for the n-dimensional
magnetohydrodynamics equations and for many other very interesting nonlin-
ear evolution equations with dissipations can be established.
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1 Introduction

1.1 The mathematical model equations
First of all, consider the Cauchy problems for the n-dimensional incompressible

Navier-Stokes equations
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∂u

∂t
− α△u+ (u · ∇)u+∇p = f(x, t), ∇ · u = 0, ∇ · f = 0, (1)

u(x, 0) = u0(x), ∇ · u0 = 0. (2)

The real vector valued function u = u(x, t) represents the velocity of the fluid at

position x and time t. The real scalar function p = p(x, t) represents the pressure

of the fluid at x and t.

Secondly, consider the Cauchy problems for the n-dimensional magnetohydro-

dynamics equations

∂u

∂t
− 1

RE
△u+ (u · ∇)u− (A · ∇)A+∇P = f(x, t), (3)

∂A

∂t
− 1

RM
△A+ (u · ∇)A− (A · ∇)u = g(x, t), (4)

∇ · u = 0, ∇ · f = 0, ∇ ·A = 0, ∇ · g = 0, (5)

u(x, 0) = u0(x), A(x, 0) = A0(x), ∇ · u0 = 0, ∇ ·A0 = 0. (6)

In this system, the real vector valued function u = u(x, t) represents the velocity

of the fluid at position x and time t, the real vector valued function A = A(x, t)

represents the magnetic field at position x and time t. The real scalar function

P (x, t) = p(x, t) + M2

2RE·RM |A(x, t)|2 represents the total pressure, where the real

scalar function p = p(x, t) represents the pressure of the fluid and 1
2 |A(x, t)|2 repre-

sents the magnetic pressure. Additionally, M > 0 represents the Hartman constant,

RE represents the Reynolds constant and RM represents the magnetic Reynolds

constant.

Now let us consider the Cauchy problems for the following n-dimensional non-

linear system of fluid dynamics equations

∂u

∂t
− α△u+N (u,∇u) = f(x, t), (7)

u(x, 0) = u0(x). (8)

In this system, α > 0 is a positive constant, x = (x1, x2, · · · , xn) represents the spa-

tial variable, the dimension n≥3. Moreover, u(x, t)=(u1(x, t), u2(x, t), · · · , um(x, t))

represents the unknown function, f(x, t) = (f1(x, t), f2(x, t), · · · , fm(x, t)) represents

the external force, and N (u,∇u) = (N1(u,∇u), N2(u,∇u), · · · , Nm(u,∇u)) repre-

sents the nonlinear function, which is sufficiently smooth, m ≥ n is an integer.

The general system (7)-(8) contains the n-dimensional incompressible Navier-

Stokes equations (1)-(2) and the n-dimensional magnetohydrodynamics equations

(3)-(6) as particular examples. The general system also contains many other inter-

esting nonlinear evolution equations with dissipations as examples.

Many mathematicians have accomplished the existence of the global weak so-

lutions of the Cauchy problems for the n-dimensional incompressible Navier-Stokes
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equations. They have also established the existence of the global smooth solutions

with small initial functions and small external forces. However, the uniform ener-

gy estimates of all order derivatives of the global weak solutions with large initial

functions or large external forces have been open, see [4,8,9]. For the n-dimensional

magnetohydrodynamics equations, there hold very similar results. Very recently,

Lei and Lin [1], Lei, Lin and Zhou [2], Peng and Zhou [5] established the existence

of large global smooth solution of three-dimensional incompressible Navier-Stokes

equations for special cases.

1.2 The main purpose

The decay estimates with sharp rates of the global weak solutions of the Cauchy

problems for the n-dimensional incompressible Navier-Stokes equations (1)-(2), the

global weak solutions of the Cauchy problems for the n-dimensional magnetohydro-

dynamics equations (3)-(6) and the global weak solutions of the Cauchy problems for

many other interesting nonlinear evolution equations with dissipations are of great

interests and importance in applied mathematics. The Fourier splitting method was

developed by Maria Schonbek [6,7] to accomplish the optimal long time asymptotic

behaviors of the global weak solutions. Today, it has become a very popular tool

to study the asymptotic behaviors and thus has been widely used, see [3,10–12] for

closely related results. To obtain the optimal decay rate, one must iterate some of

the most important steps in the Fourier splitting method for finitely many times,

see [6, 7]. We will make complete use of the uniform energy estimates (see Lemmas

3, 4 and 8 in Section 2) and the Gronwall’s inequality to avoid the iteration process

for n-dimensional problems, where n ≥ 3. Therefore, the main purpose of this paper

is to improve the Fourier splitting method so that it may become the most powerful

tool to accomplish the decay estimates with sharp rates for the global weak solutions

of many nonlinear evolution equations with dissipations.

1.3 The main results — decay estimates with sharp rates

First of all, let us make several reasonable assumptions needed for the main

results.

(A1) Suppose that the initial function u0 ∈ L1(Rn) ∩ L2(Rn) and the external

force f ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)).

(A2) Suppose that there exist real scalar functions ϕkl ∈ C1(Rn) ∩ L1(Rn) and

ψkl ∈ C1(Rn × R+) ∩ L1(Rn × R+), such that

u0(x) =

(
n∑

l=1

∂ϕ1l
∂xl

(x),
n∑

l=1

∂ϕ2l
∂xl

(x), · · · ,
n∑

l=1

∂ϕml

∂xl
(x)

)
,
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f(x, t) =

(
n∑

l=1

∂ψ1l

∂xl
(x, t),

n∑
l=1

∂ψ2l

∂xl
(x, t), · · · ,

n∑
l=1

∂ψml

∂xl
(x, t)

)
,

and

∂ϕkl
∂xl

∈ L1(Rn) ∩ L2(Rn),
∂ψkl

∂xl
∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)),

for all k = 1, 2, · · · ,m and l = 1, 2, · · · , n.
(A3) Suppose that there holds the condition∫ ∞

0
(1 + t)1+n/2

∫
Rn

|f(x, t)|2dxdt <∞.

(A4) Suppose that there holds the condition∫ ∞

0
(1 + t)2+n/2

∫
Rn

|f(x, t)|2dxdt <∞,

if ∫
Rn

u0(x)dx+

∫ ∞

0

∫
Rn

f(x, t)dxdt = 0.

(A5) Suppose that the nonlinear function satisfies∫
Rn

u(x, t) · N (u(x, t),∇u(x, t))dx = 0,

for all u ∈ L∞(R+, L2(Rn)) with ∇u ∈ L2(R+, L2(Rn)).

(A6) Suppose that the nonlinear function satisfies the condition

|N (u,∇u)| ≤ C1|u||∇u|,

for all u ∈ C1(Rn), where C1 > 0 is a positive constant, independent of u and ∇u.

(A7) Suppose that the nonlinear function satisfies∣∣∣ ̂N (u,∇u)(ξ, t)
∣∣∣ ≤ C2|ξ|

∫
Rn

|u(x, t)|2dx,

for all u ∈ L∞(R+, L2(Rn)) with ∇u ∈ L2(R+, L2(Rn)) and for all (ξ, t) ∈ Rn×R+,

where C2 > 0 is a positive constant, independent of u, ∇u and (ξ, t).

(A8) Suppose that there exists a global weak solution to the Cauchy problems

for the nonlinear system of fluid dynamics equations (7)-(8):

u ∈ L∞(R+, L2(Rn)), ∇u ∈ L2(R+, L2(Rn)).

Theorem 1 (I) Suppose that assumptions (A1), (A3), (A5)-(A8) hold. There

holds the decay estimate

(1 + t)n/2
∫
Rn

|u(x, t)|2dx ≤ C3,
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for all time t > 0, where C3 > 0 is a positive constant, independent of u and (x, t).

(II) Suppose that assumptions (A1)-(A8) hold. There holds the decay estimate

with sharp rate

(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx ≤ C4,

for all time t > 0, where C4 > 0 is a positive constant, independent of u and (x, t).

The global weak solutions of the Cauchy problems for the n-dimensional incom-

pressible Navier-Stokes equations (1)-(2) and for the n-dimensional magnetohydro-

dynamics equations (3)-(6) satisfy these conditions and results.

2 The Mathematical Analysis and the Proofs of the
Main Results

We will couple together the elementary uniform energy estimates, the Fourier

transformation, the Plancherel’s identity and the Gronwall’s inequality to improve

the Fourier splitting method to accomplish the decay estimates with sharp rates

for the global weak solutions of the Cauchy problems for the nonlinear systems of

fluid dynamics equations (7)-(8). The improved Fourier splitting method involves

the splitting of the frequency space into two time-dependent subspaces (a small ball

with radius proportional to (1 + t)−1/2 and the exterior of the small ball) and the

delicate estimates of the Fourier transformation of the global weak solutions. The

key point of the improvement is that for many nonlinear evolution equations with

dissipations, we may apply the improved Fourier splitting method to accomplish the

decay estimates with sharp rates for the global weak solutions.

2.1 The uniform energy estimates

The main purpose is to use traditional ideas, methods and techniques to establish

some uniform energy estimates.

Lemma 1(The Cauchy-Schwartz’s inequality) Let the functions f ∈ L2(Rn)

and g ∈ L2(Rn). There holds the following Cauchy-Schwartz’s inequality[∫
Rn

f(x)g(x)dx

]2
≤
∫
Rn

|f(x)|2dx
∫
Rn

|g(x)|2dx.

Lemma 2(The Hölder’s inequality) Let f ∈ Lp(Rn) and g ∈ Lq(Rn), where

p ≥ 1 and q ≥ 1 are positive constants, such that 1
p + 1

q = 1. There holds the

following estimate∣∣∣∣∫
Rn

f(x)g(x)dx

∣∣∣∣ ≤ [∫
Rn

|f(x)|pdx
]1/p [∫

Rn

|g(x)|qdx
]1/q

.
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Lemma 3 Suppose that the initial function u0 ∈ L2(Rn) and the external force

f ∈ L1(R+, L2(Rn)). There holds the following uniform energy estimate[∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2

≤
[∫

Rn

|u0(x)|2dx
]1/2

+

∫ ∞

0

[∫
Rn

|f(x, t)|2dx
]1/2

dt.

In particular, if the initial function u0 ∈ L2(Rn) and the external force f = 0, then

there holds the following uniform energy estimate∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ ≤
∫
Rn

|u0(x)|2dx.

Proof Multiplying system (7) by 2u and integrating the result with respect to

x over Rn yield the following energy equation

d

dt

∫
Rn

|u(x, t)|2dx+ 2α

∫
Rn

|∇u(x, t)|2dx = 2

∫
Rn

u(x, t) · f(x, t)dx,

where ∫
Rn

u(x, t) · N (u(x, t),∇u(x, t))dx = 0.

By using Cauchy-Schwartz’s inequality, there hold the following estimates∣∣∣∣∫
Rn

u(x, t) · f(x, t)dx
∣∣∣∣ ≤ [∫

Rn

|u(x, t)|2dx
]1/2 [∫

Rn

|f(x, t)|2dx
]1/2

≤
[∫

Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
]1/2 [∫

Rn

|f(x, t)|2dx
]1/2

.

Now the above energy equation becomes the differential inequality

d

dt

[∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]

≤ 2

[∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2 [∫

Rn

|f(x, t)|2dx
]1/2

.

Simplifying the inequality gives

d

dt

[∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2

≤
[∫

Rn

|f(x, t)|2dx
]1/2

.

Integrating this inequality with respect to time t leads to the desired energy estimate
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{∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
}1/2

≤
{∫

Rn

|u0(x)|2dx
}1/2

+

∫ t

0

{∫
Rn

|f(x, τ)|2dx
}1/2

dτ.

If f = 0, then the uniform energy estimate∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ ≤
∫
Rn

|u0(x)|2dx

follows immediately. The proof of Lemma 3 is finished.

2.2 The Fourier transformation of the global weak solutions

Lemma 4 (I) There holds the following Fourier representation

û(ξ, t) = exp(−α|ξ|2t)û0(ξ) +

∫ t

0
exp[−α|ξ|2(t− τ)]̂f(ξ, τ)dτ

−
∫ t

0
exp[−α|ξ|2(t− τ)] ̂N (u,∇u)(ξ, τ)dτ,

for all (ξ, t) ∈ Rn × R+.

(II) There holds the following estimate

|û(ξ, t)| ≤ |û0(ξ)|+
∫ t

0
|̂f(ξ, τ)|dτ

+C5

[∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
]1/2 [∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2

,

for all (ξ, t) ∈ Rn × R+, where C5 > 0 is a positive constant, independent of û and

(ξ, t).

(III) There holds the following estimate

|û(ξ, t)| ≤ C6|ξ|,

where C6 > 0 is a positive constant, independent of û and (ξ, t), if

(1 + t)n/2
∫
Rn

|u(x, t)|2dx ≤ C7,

for all time t > 0 and for another positive constant C7 > 0, independent of u and

(x, t).

Proof Performing the Fourier transformation to (7) leads to

d

dt
û(ξ, t) + α|ξ|2û(ξ, t) + ̂N (u,∇u)(ξ, t) = f̂(ξ, t).
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Multiplying this equation by the integrating factor exp(α|ξ|2t) gives
d

dt
[exp(α|ξ|2t)û(ξ, t)] + exp(α|ξ|2t) ̂N (u,∇u)(ξ, t) = exp(α|ξ|2t)f̂(ξ, t).

Integrating with respect to time t yields

exp(α|ξ|2t)û(ξ, t) +
∫ t

0
exp(α|ξ|2τ) ̂N (u,∇u)(ξ, τ)dτ

= û0(ξ) +

∫ t

0
exp(α|ξ|2τ)f̂(ξ, τ)dτ.

Finally, we have the representation.

Now let us make estimates about û(ξ, t). First of all, there hold the following

estimates∣∣∣ ̂N (u,∇u)(ξ, t)
∣∣∣ ≤ C1

∫
Rn

|u(x, t)||∇u(x, t)|dx

≤ C1

[∫
Rn

|u(x, t)|2dx
]1/2 [∫

Rn

|∇u(x, t)|2dx
]1/2

.

In particular, for the n-dimensional incompressible Navier-Stokes equations (1)-(2),

there hold the following estimates

| ̂(u · ∇)u| ≤ |ξ|
∫
Rn

|u(x, t)|2dx, |∇̂p(ξ, t)| ≤ |ξ|
∫
Rn

|u(x, t)|2dx,

| ̂(u · ∇)u(ξ, t)| ≤
{∫

Rn

|u(x, t)|2dx
}1/2{∫

Rn

|∇u(x, t)|2dx
}1/2

,

|∇̂p(ξ, t)| ≤ 2

{∫
Rn

|u(x, t)|2dx
}1/2{∫

Rn

|∇u(x, t)|2dx
}1/2

,

for all (ξ, t) ∈ Rn × R+.

Therefore, there hold the following estimates

|û(ξ, t)| ≤ |û0(ξ)|+
∫ t

0
|̂f(ξ, τ)|dτ

+C1

∫ t

0

[∫
Rn

|u(x, τ)|2dx
]1/2 [∫

Rn

|∇u(x, τ)|2dx
]1/2

dτ

≤ |û0(ξ)|+
∫ t

0
|̂f(ξ, τ)|dτ

+C1

[∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
]1/2 [∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2

.

Moreover, if there exist real scalar functions ϕkl ∈ C1(Rn) ∩ L1(Rn) and ψkl ∈
C1(Rn × R+) ∩ L1(Rn × R+), such that
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u0(x) =

(
n∑

l=1

∂ϕ1l
∂xl

(x),
n∑

l=1

∂ϕ2l
∂xl

(x), · · · ,
n∑

l=1

∂ϕml

∂xl
(x)

)
,

f(x, t) =

(
n∑

l=1

∂ψ1l

∂xl
(x, t),

n∑
l=1

∂ψ2l

∂xl
(x, t), · · · ,

n∑
l=1

∂ψml

∂xl
(x, t)

)
,

for all k = 1, 2, · · · ,m and l = 1, 2, · · · , n, then we have

û0(ξ) = i

(
n∑

l=1

ξlϕ̂1l(ξ),

n∑
l=1

ξlϕ̂2l(ξ), · · · ,
n∑

l=1

ξlϕ̂ml(ξ)

)
,

f̂(ξ, t) = i

(
n∑

l=1

ξlψ̂1l(ξ, t),

n∑
l=1

ξlψ̂2l(ξ, t), · · · ,
n∑

l=1

ξlψ̂ml(ξ, t)

)
.

By applying Cauchy-Schwartz’s inequality to the Fourier transformations, we get

the following estimates

|û0(ξ)|2 =
m∑
k=1

∣∣∣∣∣
n∑

l=1

ξlϕ̂kl(ξ)

∣∣∣∣∣
2

≤
m∑
k=1

n∑
l=1

ξ2l

n∑
l=1

|ϕ̂kl(ξ)|2 = |ξ|2
m∑
k=1

n∑
l=1

|ϕ̂kl(ξ)|2,

|̂f(ξ, t)|2 =
m∑
k=1

∣∣∣∣∣
n∑

l=1

ξlψ̂kl(ξ, t)

∣∣∣∣∣
2

≤
m∑
k=1

n∑
l=1

ξ2l

n∑
l=1

|ψ̂kl(ξ, t)|2 = |ξ|2
m∑
k=1

n∑
l=1

|ψ̂kl(ξ, t)|2.

Recall that there exists a positive constant C2 > 0, independent of û(ξ, t) and (ξ, t),

such that ∣∣∣ ̂N (u,∇u)(ξ, t)
∣∣∣ ≤ C2|ξ|

∫
Rn

|u(x, t)|2dx,

for all (ξ, t) ∈ Rn × R+. Now we obtain the following estimate

|û(ξ, t)| ≤ |û0(ξ)|+
∫ t

0
|̂f(ξ, τ)|dτ + C2|ξ|

∫ t

0

∫
Rn

|u(x, τ)|2dxdτ

≤ |ξ|

[
m∑
k=1

n∑
l=1

|ϕ̂kl(ξ)|2
]1/2

+ |ξ|
∫ t

0

[
m∑
k=1

n∑
l=1

|ψ̂kl(ξ, τ)|2
]1/2

dτ

+C9|ξ|
∫ t

0

1

(1 + τ)n/2
dτ

≤ C10|ξ|,

for all (ξ, t) ∈ Rn × R+. The proof of Lemma 4 is finished.
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2.3 The Fourier splitting method

Now let us review the Fourier splitting method developed in [6, 7] to establish

the decay estimates for the global weak solutions of system (7)-(8).

Lemma 5(The Plancherel’s identity) There holds the following Plancherel’s

identity for all real vector valued functions f ∈ L2(Rn)∫
Rn

|f(x)|2dx =
1

(2π)n

∫
Rn

|̂f(ξ)|2dξ.

Lemma 6(The Gronwall’s inequality) Suppose that the nonnegative continuous

functions f ≥ 0, g ≥ 0 and h ≥ 0 satisfy the inequality

g(t) ≤ f(t) +

∫ t

0
g(τ)h(τ)dτ,

for all t > 0, where the derivative f ′ ≥ 0. Then

g(t) ≤ f(t) exp

{∫ t

0
h(τ)dτ

}
,

for all t > 0.

Lemma 7 Let t > 0 and define

Ω(t) = {ξ ∈ Rn : α|ξ|2(1 + t) ≤ 2n}.

There holds the following estimate

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}

≤ 4n(1 + t)2n−1

∫
Ω(t)

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ.

Proof Multiplying system (7) by 2u and integrating the result with respect to

x over Rn yield

d

dt

∫
Rn

|u(x, t)|2dx+ 2α

∫
Rn

|∇u(x, t)|2dx = 2

∫
Rn

u(x, t) · f(x, t)dx,

where ∫
Rn

u(x, t) · N (u(x, t),∇u(x, t))dx = 0.

Applying the Plancherel’s identity to this equation gives

d

dt

∫
Rn

|û(ξ, t)|2dξ + 2α

∫
Rn

|ξ|2|û(ξ, t)|2dξ = 2

∫
Rn

û(ξ, t) · f̂(ξ, t)dξ.

Multiplying it by (1 + t)2n to get the energy equation
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d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}
+ 2α(1 + t)2n

∫
Rn

|ξ|2|û(ξ, t)|2dξ

= 2n(1 + t)2n−1

∫
Rn

|û(ξ, t)|2dξ + 2(1 + t)2n
∫
Rn

û(ξ, t) · f̂(ξ, t)dξ.

By applying Cauchy-Schwartz’s inequality, we have

2(1 + t)2n
∣∣∣∣∫

Rn

û(ξ, t) · f̂(ξ, t)dξ
∣∣∣∣

≤ 2n(1 + t)2n−1

∫
Rn

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ.

Now the above energy equation becomes the inequality

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}
+ 2α(1 + t)2n

∫
Rn

|ξ|2|û(ξ, t)|2dξ

≤ 4n(1 + t)2n−1

∫
Rn

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ.

Recall that Ω(t) = {ξ ∈ Rn : α|ξ|2(1 + t) ≤ 2n}. Then we have the following

estimates

2α(1 + t)2n
∫
Rn

|ξ|2|û(ξ, t)|2dξ

= 2α(1 + t)2n
∫
Ω(t)

|ξ|2|û(ξ, t)|2dξ + 2α(1 + t)2n
∫
Ω(t)c

|ξ|2|û(ξ, t)|2dξ

≥ 2α(1 + t)2n
∫
Ω(t)c

|ξ|2|û(ξ, t)|2dξ

≥ 4n(1 + t)2n−1

∫
Ω(t)c

|û(ξ, t)|2dξ

= 4n(1 + t)2n−1

∫
Rn

|û(ξ, t)|2dξ − 4n(1 + t)2n−1

∫
Ω(t)

|û(ξ, t)|2dξ.

Now the energy inequality

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}
+ 2α(1 + t)2n

∫
Rn

|ξ|2|û(ξ, t)|2dξ

≤ 4n(1 + t)2n−1

∫
Rn

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ,

becomes the new differential inequality

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}

≤ 4n(1 + t)2n−1

∫
Ω(t)

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ.

The proof of Lemma 7 is finished.
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2.4 The improved Fourier splitting method

Lemma 8 (I) There holds the following decay estimate for the global weak

solutions of the Cauchy problems (7)-(8) if assumptions (A1), (A3), (A5)-(A8) hold:

(1 + t)n/2
∫
Rn

|u(x, t)|2dx ≤ C11,

for all time t > 0, where C11 > 0 is a positive constant, independent of u and (x, t).

(II) There holds the following decay estimate with sharp rate for the global weak

solutions of the Cauchy problems for the nonlinear system of fluid dynamics equa-

tions (7)-(8) if assumptions (A1)-(A8) hold:

(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx ≤ C12,

for all time t > 0, where C12 > 0 is a positive constant, independent of u and (x, t).

Proof (I) Recall that there exists a positive constant C5 > 0, independent of

û(ξ, t) and (ξ, t), such that

|û(ξ, t)| ≤ |û0(ξ)|+
∫ t

0
|̂f(ξ, τ)|dτ

+C5

[∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
]1/2 [∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2

,

for all (ξ, t) ∈ Rn × R+.

Therefore, by using Lemma 7, we have

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}

≤ 4n(1 + t)2n−1

∫
Ω(t)

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ

≤ 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ + 4n(1 + t)2n−1

∫
Ω(t)

{
|û0(ξ)|+

∫ t

0
|̂f(ξ, τ)|dτ

+C5

[∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
]1/2 [∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
]1/2}2

dξ

≤ 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ

+C13(1 + t)3n/2−1

{∫
Rn

|u0(x)|dx+

∫ ∞

0

∫
Rn

|f(x, t)|dxdt
}2

+C14(1 + t)3n/2−1

{∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
}{∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
}
.
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Integrating this inequality with respect to time t yields

(1 + t)2n
∫
Rn

|û(ξ, t)|2dξ

≤
∫
Rn

|û0(ξ)|2dξ +
1

2n
(1 + t)3n/2

∫ t

0
(1 + τ)1+n/2

∫
Rn

|̂f(ξ, τ)|2dξdτ

+C15(1 + t)3n/2
{∫

Rn

|u0(x)|dx+

∫ ∞

0

∫
Rn

|f(x, t)|dxdt
}2

+C16(1 + t)3n/2
{∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
}{∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
}
.

That is

(1 + t)n/2
∫
Rn

|û(ξ, t)|2dξ

≤
∫
Rn

|û0(ξ)|2dξ +
1

2n

∫ ∞

0
(1 + t)1+n/2

∫
Rn

|̂f(ξ, t)|2dξdt

+C17

{∫
Rn

|u0(x)|dx+

∫ ∞

0

∫
Rn

|f(x, t)|dxdt
}2

+C18

{∫ t

0

∫
Rn

|u(x, τ)|2dxdτ
}{∫ ∞

0

∫
Rn

|∇u(x, t)|2dxdt
}
,

where C17 > 0 and C18 > 0 are positive constants, independent of u, û, (x, t) and

(ξ, t). Note that∫ t

0

∫
Rn

|u(x, τ)|2dxdτ =
1

(2π)n

∫ t

0

1

(1 + τ)n/2

[
(1 + τ)n/2

∫
Rn

|û(ξ, τ)|2dξ
]
dτ.

Recall that there holds the following uniform energy estimate{∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
}1/2

≤
{∫

Rn

|u0(x)|2dx
}1/2

+

∫ ∞

0

{∫
Rn

|f(x, t)|2dx
}1/2

dt.

By using Gronwall’s inequality, it follows that

(1 + t)n/2
∫
Rn

|û(ξ, t)|2dξ

≤
{∫

Rn

|û0(ξ)|2dξ +
1

2n

∫ ∞

0
(1 + t)1+n/2

∫
Rn

|̂f(ξ, t)|2dξdt

+ C19

[∫
Rn

|u0(x)|dx+

∫ ∞

0

∫
Rn

|f(x, t)|dxdt
]2}

· exp
{
C20

[∫ ∞

0

1

(1 + t)n/2
dt

] [∫ ∞

0

∫
Rn

|∇u(x, t)|2dxdt
]}

,
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where C19 > 0 and C20 > 0 are positive constants, independent of û(ξ, t) and (ξ, t).

(II) Recall that

|û(ξ, t)| ≤ C6|ξ|,

for all (ξ, t) ∈ Rn × R+. Now we have the following estimates

d

dt

{
(1 + t)2n

∫
Rn

|û(ξ, t)|2dξ
}

≤ 4n(1 + t)2n−1

∫
Ω(t)

|û(ξ, t)|2dξ + 1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ

≤ 4n(1 + t)2n−1

∫
Ω(t)

C21|ξ|2dξ +
1

2n
(1 + t)2n+1

∫
Rn

|̂f(ξ, t)|2dξ.

Integrating the inequality in time t yields the estimate

(1 + t)2n
∫
Rn

|û(ξ, t)|2dξ

≤
∫
Rn

|û0(ξ)|2dξ+
1

2n
(1+t)3n/2−1

∫ t

0
(1+τ)2+n/2

∫
Rn

|̂f(ξ, τ)|2dξdτ+C22(1+t)
3n/2−1.

That is

(1 + t)1+n/2

∫
Rn

|û(ξ, t)|2dξ

≤
∫
Rn

|û0(ξ)|2dξ + C23 + C24

∫ ∞

0
(1 + t)2+n/2

∫
Rn

|̂f(ξ, t)|2dξdt.

The proof of Lemma 8 is finished.

Therefore, the proofs of the main results stated in Theorem 1 are finished.

Remark Both the global weak solutions of the Cauchy problems for the n-

dimensional incompressible Navier-Stokes equations (1)-(2) and the global weak so-

lutions of the Cauchy problems for the n-dimensional magnetohydrodynamics equa-

tions (3)-(6) enjoy the decay estimates.

3 Conclusions and Remarks

3.1 Summary

The main purpose of this paper is to improve the Fourier splitting method to

simplify the mathematical analysis to accomplish the decay estimates with sharp

rates.

We considered the Cauchy problems for the following n-dimensional nonlinear

system of fluid dynamics equations

∂u

∂t
− α△u+N (u,∇u) = f(x, t), u(x, 0) = u0(x).
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The general system contains the n-dimensional incompressible Navier-Stokes equa-

tions (1)-(2) and the n-dimensional magnetohydrodynamics equations (3)-(6) as

particular examples. There holds the following decay estimate with sharp rate

(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx ≤ C25,

for all time t > 0, where C25 > 0 is a positive constant, independent of u and (x, t).

The uniform energy estimate played a key role in the mathematical analysis.

3.2 Summary about the n-dimensional incompressible Navier-
Stokes equations

Consider the Cauchy problems for the n-dimensional incompressible Navier-

Stokes equations

∂u

∂t
− α△u+ (u · ∇)u+∇p = f(x, t), ∇ · u = 0, ∇ · f = 0,

u(x, 0) = u0(x), ∇ · u0 = 0.

Suppose that the initial function u0 ∈ L1(Rn) ∩ L2(Rn) and the external force

f ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)). There exists a global weak solution u ∈
L∞(R+, L2(Rn)), such that ∇u ∈ L2(R+, L2(Rn)).

There holds the following uniform energy estimate{∫
Rn

|u(x, t)|2dx+ 2α

∫ t

0

∫
Rn

|∇u(x, τ)|2dxdτ
}1/2

≤
{∫

Rn

|u0(x)|2dx
}1/2

+

∫ t

0

{∫
Rn

|f(x, τ)|2dx
}1/2

dτ.

Due to the divergence free conditions ∇ · u0 = 0 and ∇ · f = 0, it is necessarily

true that
∫
Rn u0(x)dx = 0 and

∫
Rn f(x, t)dx = 0, for all t > 0.

Suppose that there exist real scalar functions ϕkl ∈ C1(Rn) ∩ L1(Rn) and ψkl ∈
C1(Rn × R+) ∩ L1(Rn × R+), such that

u0(x) =

(
n∑

l=1

∂ϕ1l
∂xl

(x),
n∑

l=1

∂ϕ2l
∂xl

(x), · · · ,
n∑

l=1

∂ϕnl
∂xl

(x)

)
,

f(x, t) =

(
n∑

l=1

∂ψ1l

∂xl
(x, t),

n∑
l=1

∂ψ2l

∂xl
(x, t), · · · ,

n∑
l=1

∂ψnl

∂xl
(x, t)

)
,

and that

∂ϕkl
∂xl

∈ L1(Rn) ∩ L2(Rn),
∂ψkl

∂xl
∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)),

for all k = 1, 2, · · · , n and l = 1, 2, · · · , n.
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There holds the following decay estimate for the global weak solutions of the

Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx ≤ C26,

for all time t > 0, where C26 > 0 is a positive constant, independent of u and (x, t).

Let us review some important open problems about the global smooth solutions

and their influences. Suppose that the initial function u0 ∈ L1(Rn) ∩ H2m+1(Rn)

and the external force f ∈ L1(Rn ×R+)∩L1(R+, L2(Rn))∩L2(R+,H2m(Rn)). The

following uniform energy estimates have been open∫
Rn

|∇u(x, t)|2dx ≤ C27,∫
Rn

|△u(x, t)|2dx ≤ C28,∫
Rn

|△mu(x, t)|2dx ≤ C29,∫
Rn

|∇△mu(x, t)|2dx ≤ C30,

for all positive integers m ≥ 1 and for all time t > 0, where C27 > 0, C28 > 0,

C29 > 0 and C30 > 0 are positive constants, independent of u and (x, t). Therefore,

the existence of the global smooth solution u ∈ L∞(R+,H2m+1(Rn)) such that

∇u ∈ L2(R+,H2m+1(Rn)) has been open.

Suppose that the initial function u0 ∈ L1(Rn) ∩ H2m+1(Rn) and the external

force f ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)) ∩ L2(R+,H2m(Rn)). Suppose that there

exists a global smooth solution to the Cauchy problems for the n-dimensional in-

compressible Navier-Stokes equations (1)-(2): u ∈ L∞(R+,H2m+1(Rn)), such that

∇u ∈ L2(R+,H2m+1(Rn)), where m ≥ 1 is a positive integer. There hold the

following decay estimates with sharp rates

(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx ≤ C31,

(1 + t)2+n/2

∫
Rn

|∇u(x, t)|2dx ≤ C32,

(1 + t)2m+1+n/2

∫
Rn

|△mu(x, t)|2dx ≤ C33,

(1 + t)2m+2+n/2

∫
Rn

|∇△mu(x, t)|2dx ≤ C34,

and
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(1 + t)1/2+n/2∥u(·, t)∥L∞ ≤ C35,

(1 + t)1+n/2∥∇u(·, t)∥L∞ ≤ C36,

(1 + t)m+1/2+n/2∥△mu(·, t)∥L∞ ≤ C37,

(1 + t)m+1+n/2∥∇△mu(·, t)∥L∞ ≤ C38,

for all positive integers m ≥ 1 and for all time t > 0, where C31 > 0, C32 > 0,

C33 > 0, C34 > 0, C35 > 0, C36 > 0, C37 > 0, C38 > 0 are positive constants,

independent of u and (x, t).

Now let us consider a very interesting question for the global smooth solutions of

the Cauchy problems for the n-dimensional incompressible Navier-Stokes equations

(1)-(2). As t→ ∞, how do the following exact limits

lim
t→∞

{
(1 + t)1+n/2

∫
Rn

|u(x, t)|2dx
}
,

lim
t→∞

{
(1 + t)2+n/2

∫
Rn

|∇u(x, t)|2dx
}
,

lim
t→∞

{
(1 + t)2m+1+n/2

∫
Rn

|△mu(x, t)|2dx
}
,

lim
t→∞

{
(1 + t)2m+2+n/2

∫
Rn

|∇△mu(x, t)|2dx
}
,

depend on the nonlinear function, the initial function, the nonhomogeneous func-

tion, the dimension n and the order of the derivative (that is, the integerm)? Do the

global smooth solutions carry initial information (e.g. mass, energy and momentum

of physical objects) to the very end? In another word, can the global smooth solu-

tions “remember the very beginning” at “the very end”? We will couple together

existing ideas, methods, results and new ideas to generate a very different method to

solve these complicated mathematical problems and accomplish very general results.

Again consider the Cauchy problems for the n-dimensional incompressible Navier-

Stokes equations

∂u

∂t
− α△u+ (u · ∇)u+∇p = f(x, t), ∇ · u = 0, ∇ · f = 0,

u(x, 0) = u0(x), ∇ · u0 = 0.

The following estimate has been open∣∣∣ ̂N (u,∇u)(ξ, t)
∣∣∣ ≤ |ξ||û(ξ, t)|κ1(|û(ξ, t)|) + |ξ|2−ε|û(ξ, t)|κ2(|û(ξ, t)|),

for all (ξ, t) ∈ Rn × R+, where κ1 = κ1(t) and κ2 = κ2(t) are positive, continuous,

increasing functions defined on (0,∞), 0 < ε≪ 1 is a constant.
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If this estimate is true, then there exists a unique global smooth solution u ∈
C∞(Rn × R+) to (1)-(2) and there hold the following decay estimates with sharp

rates

(1 + t)2m+1+n/2

∫
Rn

|△mu(x, t)|2dx ≤ C39,

for all positive integers m ≥ 1 and for all time t > 0, where C39 > 0 is a positive

constant, independent of u and (x, t).

If there exists a global smooth solution u ∈ C∞(Rn×R+) to the Cauchy problems

for the n-dimensional incompressible Navier-Stokes equations (1)-(2), then there

holds the following solution representation

u(x, t) =
1

(4παt)n/2

∫
Rn

exp

[
−|x− y|2

4αt

]
u0(y)dy

+

∫ t

0

{
1

[4πα(t− τ)]n/2

∫
Rn

exp

[
− |x− y|2

4α(t− τ)

]
f(y, τ)dy

}
dτ

−
∫ t

0

{
1

[4πα(t− τ)]n/2

∫
Rn

exp

[
− |x− y|2

4α(t− τ)

]
[(u(y, τ) · ∇)u(y, τ)]dy

}
dτ

−
∫ t

0

{
1

[4πα(t− τ)]n/2

∫
Rn

exp

[
− |x− y|2

4α(t− τ)

]
∇p(y, τ)dy

}
dτ.

3.3 Summary about the n-dimensional magnetohydrodynamics
equations

Consider the Cauchy problems for the n-dimensional magnetohydrodynamics

equations

∂u

∂t
− 1

RE
△u+ (u · ∇)u− (A · ∇)A+∇P = f(x, t),

∂A

∂t
− 1

RM
△A+ (u · ∇)A− (A · ∇)u = g(x, t),

∇ · u = 0, ∇ · f = 0, ∇ ·A = 0, ∇ · g = 0,

u(x, 0) = u0(x), A(x, 0) = A0(x), ∇ · u0 = 0, ∇ ·A0 = 0.

Suppose that the initial functions

u0 ∈ L1(Rn) ∩ L2(Rn), A0 ∈ L1(Rn) ∩ L2(Rn).

Suppose that the external forces

f ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)),

g ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)).

There exists a global weak solution
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u ∈ L∞(R+, L2(Rn)), A ∈ L∞(R+, L2(Rn)),

such that

∇u ∈ L2(R+, L2(Rn)), ∇f ∈ L2(R+, L2(Rn)).

There holds the following uniform energy estimate{∫
Rn

[|u(x, t)|2+|A(x, t)|2]dx+
∫ t

0

∫
Rn

[
2

RE
|∇u(x, τ)|2+ 2

RM
|∇A(x, τ)|2

]
dxdτ

}1/2

≤
{∫

Rn

[|u0(x)|2 + |A0(x)|2]dx
}1/2

+

∫ t

0

{∫
Rn

[|f(x, τ)|2 + |g(x, τ)|2]dx
}1/2

dτ.

Suppose that there exist real scalar functions

ϕkl ∈ C1(Rn) ∩ L1(Rn), ψkl ∈ C1(Rn × R+) ∩ L1(Rn × R+),

κkl ∈ C1(Rn) ∩ L1(Rn), ωkl ∈ C1(Rn × R+) ∩ L1(Rn × R+),

such that

u0(x) =

(
n∑

l=1

∂ϕ1l
∂xl

(x),

n∑
l=1

∂ϕ2l
∂xl

(x), · · · ,
n∑

l=1

∂ϕnl
∂xl

(x)

)
,

f(x, t) =

(
n∑

l=1

∂ψ1l

∂xl
(x, t),

n∑
l=1

∂ψ2l

∂xl
(x, t), · · · ,

n∑
l=1

∂ψnl

∂xl
(x, t)

)
,

A0(x) =

(
n∑

l=1

∂κ1l
∂xl

(x),

n∑
l=1

∂κ2l
∂xl

(x), · · · ,
n∑

l=1

∂κnl
∂xl

(x)

)
,

g(x, t) =

(
n∑

l=1

∂ω1l

∂xl
(x, t),

n∑
l=1

∂ω2l

∂xl
(x, t), · · · ,

n∑
l=1

∂ωnl

∂xl
(x, t)

)
,

and that

∂ϕkl
∂xl

∈ L1(Rn) ∩ L2(Rn),
∂ψkl

∂xl
∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)),

∂κkl
∂xl

∈ L1(Rn) ∩ L2(Rn),
∂ωkl

∂xl
∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)),

for all k = 1, 2, · · · , n and l = 1, 2, · · · , n.
There holds the following decay estimate with sharp rate

(1 + t)1+n/2

∫
Rn

[|u(x, t)|2 + |A(x, t)|2]dx ≤ C40,
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for all time t > 0, where C40 > 0 is a positive constant, independent of (u,A) and

(x, t).

Let us review some open problems and their influences about system (3)-(6).

Suppose that the initial functions

u0 ∈ L1(Rn) ∩H2m+1(Rn), A0 ∈ L1(Rn) ∩H2m+1(Rn).

Suppose that the external forces

f ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)) ∩ L2(R+,H2m(Rn)),

g ∈ L1(Rn × R+) ∩ L1(R+, L2(Rn)) ∩ L2(R+,H2m(Rn)).

The following uniform energy estimates have been open∫
Rn

[|∇u(x, t)|2 + |∇A(x, t)|2]dx ≤ C41,∫
Rn

[|△u(x, t)|2 + |△A(x, t)|2]dx ≤ C42,∫
Rn

[|△mu(x, t)|2 + |△mA(x, t)|2]dx ≤ C43,∫
Rn

[|∇△mu(x, t)|2 + |∇△mA(x, t)|2]dx ≤ C44,

for all positive integers m ≥ 1 and for all time t > 0, where C41 > 0, C42 > 0,

C43 > 0, C44 > 0 are positive constants, independent of (u,A) and (x, t).

The existence of the global smooth solution of the Cauchy problems for the

n-dimensional magnetohydrodynamics equations (3)-(6):

u ∈ L∞(R+,H2m+1(Rn)), A ∈ L∞(R+,H2m+1(Rn)),

such that

∇u ∈ L2(R+,H2m+1(Rn)), ∇A ∈ L2(R+,H2m+1(Rn)),

has been open.

Suppose that there exists a global smooth solution to the Cauchy problems for

the n-dimensional magnetohydrodynamics equations:

u ∈ L∞(R+,H2m+1(Rn)), A ∈ L∞(R+,H2m+1(Rn)),

such that

∇u ∈ L2(R+,H2m+1(Rn)), ∇A ∈ L2(R+,H2m+1(Rn)),

where m ≥ 1 is a positive integer.

For the global smooth solution of the n-dimensional magnetohydrodynamics
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equations (3)-(6), there hold the following decay estimates with sharp rates

(1 + t)1+n/2

∫
Rn

[|u(x, t)|2 + |A(x, t)|2]dx ≤ C45,

(1 + t)2+n/2

∫
Rn

[|∇u(x, t)|2 + |∇A(x, t)|2]dx ≤ C46,

(1 + t)2m+1+n/2

∫
Rn

[|△mu(x, t)|2 + |△mA(x, t)|2]dx ≤ C47,

(1 + t)2m+2+n/2

∫
Rn

[|∇△mu(x, t)|2 + |∇△mA(x, t)|2]dx ≤ C48,

and

(1 + t)1/2+n/2[∥u(·, t)∥L∞ + ∥A(·, t)∥L∞ ] ≤ C49,

(1 + t)1+n/2[∥∇u(·, t)∥L∞ + ∥∇A(·, t)∥L∞ ] ≤ C50,

(1 + t)m+1/2+n/2[∥△mu(·, t)∥L∞ + ∥△mA(·, t)∥L∞ ] ≤ C51,

(1 + t)m+1+n/2[∥∇△mu(·, t)∥L∞ + ∥∇△mA(·, t)∥L∞ ] ≤ C52,

for all positive integers m ≥ 1 and for all time t > 0, where C45 > 0, C46 > 0, C47 >

0, C48 > 0, C49 > 0, C50 > 0, C51 > 0, C52 > 0 are positive constants, independent

of (u,A) and (x, t). The proofs follow from the Fourier splitting method.

Let α1 = 1
RE and α2 = 1

RM . If there exists a global smooth solution u ∈
C∞(Rn × R+), A ∈ C∞(Rn × R+) to the Cauchy problems for the n-dimensional

magnetohydrodynamics equations (3)-(6), then there hold the following solution

representations

u(x, t) =
1

(4πα1t)n/2

∫
Rn

exp

[
−|x− y|2

4α1t

]
u0(y)dy

+

∫ t

0

{
1

[4πα1(t− τ)]n/2

∫
Rn

exp

[
− |x− y|2

4α1(t− τ)

]
f(y, τ)dy

}
dτ

−
∫ t

0

{
1

[4πα1(t−τ)]n/2

∫
Rn

exp

[
− |x−y|2

4α1(t−τ)

]
[(u(y, τ) · ∇)u(y, τ)]dy

}
dτ

−
∫ t

0

{
1

[4πα1(t−τ)]n/2

∫
Rn

exp

[
− |x−y|2

4α1(t−τ)

]
[(A(y, τ) · ∇)A(y, τ)]dy

}
dτ

−
∫ t

0

{
1

[4πα1(t− τ)]n/2

∫
Rn

exp

[
− |x− y|2

4α1(t− τ)

]
∇P (y, τ)dy

}
dτ,
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A(x, t) =
1

(4πα2t)n/2

∫
Rn

exp

[
−|x− y|2

4α2t

]
A0(y)dy

+

∫ t

0

{
1

[4πα2(t−τ)]n/2

∫
Rn

exp

[
− |x−y|2

4α2(t−τ)

]
g(y, τ)dy

}
dτ

−
∫ t

0

{
1

[4πα2(t−τ)]n/2

∫
Rn

exp

[
− |x−y|2

4α2(t−τ)

]
[(u(y, τ) · ∇)A(y, τ)]dy

}
dτ

−
∫ t

0

{
1

[4πα2(t−τ)]n/2

∫
Rn

exp

[
− |x−y|2

4α2(t−τ)

]
[(A(y, τ) · ∇)u(y, τ)]dy

}
dτ.
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