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Abstract: In this paper, we investigate the fundamental equations of submanifolds under or-

thogonal connections and apply the results in totally umbilical submanifolds. By using the method

of Cartan to split the torsion tensor into three components, we calculate and attain the fundamental

equations. We consider a special orthogonal connection with which the Riemannian curvature has

the same properties as the Levi-Civita connection. We use the fundamental equations to argue to-

tally umbilical submanifolds on spaces with constant curvature, which generalizes the results under

the Levi-Civita connection.
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1 Introduction

Orthogonal connections are affine connections compatible with the metric. Cartan re-
searched general orthogonal connections in the 1920s. An orthogonal connection minus the
Levi-Civita equals a tensor which is called torsion. Cartan found that in general the torsion
tensor can split into three components: the vectorial torsion, the totally anti-symmetric
one and the one of Cartan-type. Taking the scalar curvature of orthogonal connections one
attains the Einstein-Cartan-Hilbert functional. Its critical points are Einstein manifolds, in
particular the torsion of a critical point is zero.

We review Cartan’s classification and Einstein-Cartan theory in Section 2. Under an
orthogonal connection, in general, the Bianchi identity is not always hold, so many properties
are not as brief as the Levi-Civita connection. We try to find an orthogonal connection which
is not the Levi-Civita connection satisfying the Bianchi identity. In this paper, we focus on
totally umbilical submanifold in a constant curvature space. We calculate the fundamental
equations, and want to use the Causs equation to express the curvature and investigate the
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totally umbilical submanifold under an orthogonal connection. To read more results about
orthogonal connections, especially properties on subminifolds, please refer to our other work.

2 Preliminaries

We consider an n-dimensional manifold M equipped with some Riemannian metric g.
Let ∇ denote the Levi-Civita connection on the tangent bundle. For any affine connection
∇′ on the tangent bundle there exists a (2,1)-tensor field A such that

∇′XY = ∇XY + A(X, Y ) (2.1)

for all vector fields X, Y .
In this article we will require all connections ∇′ to be orthogonal, i.e., for all vector

fields X, Y, Z, one has
X〈Y, Z〉 = 〈∇′XY, Z〉+ 〈Y,∇′XZ〉, (2.2)

where 〈· , · 〉 denotes the scalar product given by the Riemannian metric g. For any tangent
vector X one gets from (2.1) and (2.2) that the endomorphism A(X, · ) is skew-adjoint

〈A(X, Y ), Z〉 = −〈Y, A(X, Z)〉. (2.3)

Next, we want to express some curvature quantities for ∇′ in terms of A and curvature
quantities for ∇. To that end we fix some point p ∈ M , and we extend any tangent vectors
X, Y, Z, W ∈ TpM to vector fields again denoted by X, Y, Z, W being synchronous in p,
which means

∇V X = ∇V Y = ∇V Z = ∇V W = 0 for any tangent vector V ∈ TpM .

Furthermore, we choose a local orthogonal frame of vector fields E1, · · · , En on a neighbour-
hood of p, all being synchronous in p, then the Lie bracket [X, Y ] = ∇XY − ∇Y X = 0
vanishes in p, and synchronicity in p implies

∇′X∇′Y Z = ∇X∇Y Z + (∇XA)(Y, Z) + A(X, A(Y, Z)).

Hence, in p the Riemann tensor of ∇′ reads as

Riem′(X, Y )Z = ∇′X∇′Y Z −∇′Y∇′XZ −∇′[X,Y ]Z

= Riem(X, Y )Z + (∇XA)(Y, Z)− (∇Y A)(X, Z)

+ A(X, A(Y, Z))−A(Y, A(X, Z)),

(2.4)

where Riem′ denotes the Riemann tensor of∇. We note that Riem′(X, Y )Z is anti-symmetric
in X and Y . And by differentiation of (2.3) we get that(∇Ei

A)(Ej , ·) and (∇Ej
A)(Ei, ·) are

skewadjoint, and therefore we have

〈Riem′(Ei, Ej)Ek, El〉 = −〈Riem′(Ei, Ej)El, Ek〉. (2.5)

In general, Riem′ does not satisfy the Bianchi identity. The Ricci curvature of ∇′ is defined
as
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ric′(X, Y ) = tr(V 7−→ Riem′(V, X)Y ),

by (2.4) this can be expressed as

ric′(X, Y ) =
n∑

i=1

〈Riem′(Ei, X)Y, Ei〉

= ric(X, Y ) +
n∑

i=1

(〈(∇Ei
A)(X, Y ), Ei〉 − 〈(∇XA)(Ei, Y ), Ei〉)

+
n∑

i=1

(−〈A(X, Y ), A(Ei, Ej)〉+ 〈A(Ei, Y ), A(X, Ei)〉),

(2.6)

where ric′ is the Ricci curvature of ∇′. We have used that A(Ei, ·) and A(X, ·) are skew-
adjoint.

One obtains the scalar curvature R′ of ∇′ by taking yet another trace, in p it is given as

R′ =
n∑

j=1

ric′(Ej , Ej). For the following calculation we use that (∇V A)(X, ·) is skew-adjoint

for any tangent vectors V, X, and we get

R′ = R +
n∑

i,j=1

(〈(∇Ei
A)(Ej , Ej), Ei〉+ 〈(∇Ej

A)(Ei, Ei), Ej〉)

+
n∑

i,j=1

(−〈A(Ej , Ej), A(Ei, Ei)〉+ 〈A(Ei, Ej), A(Ej , Ei)〉)

= R + 2
n∑

i,j=1

〈(∇Ei
A)(Ej , Ej), Ei〉− ‖

n∑
i=1

A(Ei, Ej) ‖2

+
n∑

i,j=1

〈A(Ei, Ej), A(Ej , Ei)〉),

(2.7)

where R denotes the scalar curvature of ∇.
From (2.3) we know that the torsion tensor A(X, ·) is skew-adjoint on the tangent space

TpM . Any torsion tensor A induces a (3, 0)-tensor by setting

AXY Z = 〈A(X, Y ), Z〉 for any X, Y, Z ∈ TpM .

We define the space of all possible torsion tensors on TpM by

Υ(TpM) = {A ∈ ⊗3T ∗p M | AXY Z = −AXZY , ∀X, Y, Z ∈ TpM}.
This vector space carries a scalar product

〈A,A′〉 =
n∑

i,j,k=1

AEiEiEk
A′EiEjEk

. (2.8)

For A ∈ Υ(TpM) and Z ∈ TpM one denotes the trace over the first two entries by

C12(A)(Z) =
n∑

i=1

AEiEjZ . (2.9)
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Using the definition of inner product of tensors, we denote

‖ A ‖2= 〈A,A〉, (2.10)

〈A, Â〉 =
n∑

i,j,k=1

AEiEjEk
AEjEiEk

, (2.11)

‖ c12(A) ‖2=
n∑

i,j,k=1

AEiEiEk
AEjEjEk

, (2.12)

here Â denotes the (3,0)-tensor obtained from A by interchanging the first two slots, i.e.,
ÂXY Z = AY XZ for all tangent vectors X, Y, Z.

Theorem 2.1 For dim(M) ≥ 3, one has the following decomposition of Υ(TpM) into
irreducible O(TpM)-subrepresentations

Υ(TpM) = Υ1(TpM)⊕Υ2(TpM)⊕Υ3(TpM).

This decomposition is orthogonal with respect to 〈·, ·〉, and it is given by

Υ1(TpM) = {A ∈ Υ(TpM) | ∃V s.t. ∀X, Y, Z : AXY Z = 〈X, Y 〉〈V, Z〉 − 〈X, Z〉〈V, Y 〉},
Υ2(TpM) = {A ∈ Υ(TpM) | ∀X, Y, Z : AXY Z = −AY XZ},
Υ3(TpM) = {A ∈ Υ(TpM) | ∀X, Y, Z : AXY Z + AY ZX + AZXY = 0 and c12(A)(Z) = 0}.

For dim(M) = 2 the O(TpM)-representation Υ(TpM) = Υ1(TpM) is irreducible.
Proof Step 1 Proof the decomposition exists.
Suppose any A ∈ Υ(TpM), A = A(1) + A(2) + A(3), A(i) ∈ Υi(TpM), i = 1, 2, 3. We

denote AEiEjEk
by Aijk, and denote 〈Ei, Ej〉 by δij , therefore

n∑
i=1

Aiij =
n∑

i=1

A
(1)
iij =

n∑
i=1

(δii〈V, Ej〉 − δij〈V, Ei〉) = (n− 1)〈V, Ej〉,

we get

V =
1

n− 1

n∑
j=1

[(
n∑

i=1

Aiij)Ej ],

so A(1) can be confirmed. Then A − A(1) = A(2) + A(3). Set A(2) = 1
6
A

(2)
ijkW

i ∧W j ∧W k,

hence

(A−A(1))(Ei, Ej , Ek) + (A−A(1))(Ej , Ek, Ei) + (A−A(1))(Ek, Ei, Ej)

= 3A(2)(Ei, Ej , Ek),

A
(2)
ijk =

1
3
{(A−A(1))(Ei, Ej , Ek) + (A−A(1))(Ej , Ek, Ei) + (A−A(1))(Ek, Ei, Ej}.

Therefore A(2) is confirmed.
We need to ensure that A(3) = A−A(1) −A(2) is a Cartan-type.
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For any X, Y, Z ∈ TpM , since A
(1)
XY Z + A

(1)
Y ZX + A

(1)
ZXY = 0, we have

A
(3)
XY Z =AXY Z −A

(1)
XY Z −A

(2)
XY Z

=AXY Z −A
(1)
XY Z

− 1
18
{[(A−A(1))ijk + (A−A(1))jki + (A−A(1))kij ]W i ∧W j ∧W k}(X, Y, Z)

=AXY Z −A
(1)
XY Z −

1
3
(AXY Z + AY ZX + AZXY ).

In the same way,

A
(3)
Y ZX =AY ZX −A

(1)
Y ZX − 1

3
(AXY Z + AY ZX + AZXY ),

A
(3)
ZXY =AZXY −A

(1)
ZXY −

1
3
(AXY Z + AY ZX + AZXY ).

Add the two sides of the equations, we get A
(3)
XY Z + A

(3)
Y ZX + A

(3)
ZXY = 0, consider

n∑
i=1

A
(3)
EiEiZ

=
n∑

i=1

(A−A(1) −A(2))(Ei, Ei, Z)

=
n∑

i=1

(A−A(1))(Ei, Ei, Z)

=
n∑

i=1

AEiEiZ −
n∑

i=1

(δii〈V, Z〉 − 〈V, Z〉)

=
n∑

i=1

AEiEiZ − (n− 1)〈V, Z〉 (V is confirmed above)

=0.

Hence the decomposition exists.
Step 2 The decomposition is unique.
Let A = 0 ∈ Υ(TpM), if A = A(1) + A(2) + A(3), then

0 =
n∑

i=1

AEiEiZ = A
(1)
EiEiZ

= (n− 1)〈V, Z〉 for anyV ∈ TpM.

So V = 0, i.e., A(1) = 0.

0 = A(X, Y, Z) + A(Y, X,Z) + A(Z, X, Y ) = 3A(2)(X, Y, Z) for any X, Y, Z ∈ TpM.

So A(2) = 0 and A(3) = 0.
Step 3 The three space are orthogonal with each other.
Υ1⊥Υ2:

n∑
i,j,k=1

(δij〈V, Ek〉 − δik〈V, Ej〉)Aijk =
n∑

i,j,k=1

δij〈V, Ek〉Aijk −
n∑

i,j,k=1

δki〈V, Ej〉Akij = 0;
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Υ1⊥Υ3:

n∑
i,j,k=1

(δij〈V, Ek〉 − δik〈V, Ej〉)Aijk =
n∑

i,k=1

Aiik〈V, Ek〉 −
n∑

j,k=1

Akjk〈V, Ej〉

=
n∑

i=1

AEiEiV −
n∑

k=1

AEkV Ek
= 0.

Υ2⊥Υ3:

n∑
i,j,k=1

A
(2)
ijkA

(3)
ijk =

1
3

n∑
i,j,k=1

{A(2)
ijkA

(3)
ijk +

n∑
i,j,k=1

A
(2)
jkiA

(3)
jki +

n∑
i,j,k=1

A
(2)
kijA

(3)
kij}

=
1
3

n∑
i,j,k=1

A
(2)
ijk(A

(3)
ijk + A

(3)
jki + A

(3)
kij) = 0.

For more about this proof, cf. [12].
The connections whose torsion tensor is contained in Υ1(TpM) ∼= TpM are called vecto-

rial. Those whose torsion tensor is in Υ2(TpM) = ∧3T ∗p M are called totally anti-symmetric,
and those with torsion tensor in Υ3(TpM) are called of Cartan-type.

We note that any Cartan-type torsion tensor A ∈ Υ3(TpM) is trace-free in any pair of
entries, i.e., for any Z, one has

n∑
i=1

AEiEiZ = 0,

n∑
i=1

AEiZEi
= 0,

n∑
i=1

AZEiEi
= 0.

The second equality holds as A ∈ Υ(TpM), and the third one follows from the cyclic identity
AXY Z + AY ZX + AZXY = 0.

Remark 2.2 The invariant quadratic form given in (2.12) has the null space Υ2(TpM)⊕
Υ3(TpM). More precisely, one has A ∈ Υ2(TpM) ⊕ Υ3(TpM) if and only if c12(A)(Z) = 0
for any Z ∈ TpM.

Remark 2.3 The decomposition given in Theorem 2.1 is orthogonal with respect to
the bilinear form given in (2.11), i.e., for α, β ∈ {1, 2, 3}, α 6= β, and Aα ∈ Υα(TpM),
Aβ ∈ Υβ(TpM), one gets 〈Aα, Âβ〉.

Corollary 2.4 For any orthogonal connection ∇′ on some Riemannian manifold of
dimension n > 3 there exist a vector field V , a 3-form T and a (0,3)-tensor field S with
Sp ∈ Υ3(TpM) for any p ∈ M such that ∇′XY = ∇XY + A(X, Y ) takes the form

A(X, Y ) = 〈X, Y 〉V − 〈V, Y 〉X + T (X, Y, ·)# + S(X, Y, ·)#,

where T (X, Y, ·)# and S(X, Y, ·)# are the unique vectors with

T (X, Y, z) = 〈T (X, Y, ·)#, Z〉 and S(X, Y, z) = 〈S(X, Y, ·)#, Z〉 for all Z.

For any orthogonal connection these V, T, S are unique.
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Lemma 2.5 The scalar curvature of an orthogonal connection is given by

R′ = R + 2(n− 1)div∇(V )− (n− 1)(n− 2)‖V ‖2 − ‖T‖2 +
1
2
‖S‖2

with V, T, S as in Corollary 2.4, and div∇(V ) is the divergence of the vector field V taken
with respect to the Levi-Civita connection.

Corollary 2.6 Let M be a closed manifold of dimension n > 3 with Riemannian
metric g and orthogonal connection ∇′. Let dvol denote the Riemannian volume measure
taken with respect to g. Then the Einstein-Cartan-Hilbert functional is

∫

M

R′ dvol =
∫

M

R dvol− (n− 1)(n− 2)
∫

M

‖V ‖2 dvol−
∫

M

‖T‖2 dvol +
1
2

∫

M

‖S‖2 dvol.

3 The Fundamental Equations under Orthogonal Connections and Some

Results

Let M to be a submanifold of M . The signs ∇′, ∇, A and R
′
are orthogonal connection,

the Levi-Civita connection, torsion tensor and Riemannian curvature related to M . The signs
∇′, ∇, A and R are orthogonal connection, the Levi-Civita connection, torsion tensor and
Riemannian curvature related to M inheriting from M and the Riemannian curvature of M .

We have the two orthogonal decomposition

Gauss formula: ∇′XY = ∇′XY + B′(X, Y ), X, Y ∈ TpM,

Weingarten formula: ∇′Xξ = −Aξ(X) +∇′⊥X ξ, X ∈ TpM, ξ ∈ T⊥p M.

Under the Levi-Civita connection, we denote B′ by B.

It is easy to check that ∇′ and ∇′⊥ keep compatible with metric, since

X〈Y, Z〉 = 〈∇′XY, Z〉+ 〈Y,∇′XZ〉 = 〈∇′XY, Z〉+ 〈Y,∇′XZ〉,
X〈ξ, η〉 = 〈∇′Xξ, η〉+ 〈ξ,∇′Xη〉 = 〈∇′⊥X ξ, η〉+ 〈ξ,∇′⊥X η〉.

And we have the fact that 〈B′(X, Y ), ξ〉 = 〈Aξ(X), Y 〉 .

Theorem 3.1 (Guass Equation)

R
′
(X, Y, Z, W ) = R′(X, Y, Z, W ) + 〈B′(X, Z), B′(Y, W )〉 − 〈B′(X, W ), B′(Y, Z)〉

for any X, Y, Z, W ∈ TpM .
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Proof

R
′
(X, Y, Z, W )

=〈R′
(X, Y )Z,W 〉

=〈∇′X∇
′
Y Z −∇′Y∇

′
XZ −∇′[X,Y ]Z, W 〉

=〈∇′X(∇′Y Z + B′(Y, Z))−∇′Y (∇′XZ + B′(X, Z))−∇′[X,Y ]Z −B′([X, Y ], Z),W 〉
=〈∇′X∇′Y Z −AB′(Y,Z)(X)−∇′Y∇′XZ + AB′(X,Z)(Y )−∇′[X,Y ]Z, W 〉
=R′(X, Y, Z, W )− 〈AB′(Y,Z)(X),W 〉+ 〈AB′(X,Z)(Y ),W 〉
=R′(X, Y, Z, W ) + 〈B′(X, Z), B′(Y, W )〉 − 〈B′(X, W ), B′(Y, Z)〉.

Theorem 3.2 (Codazzi Equation)

(R
′
(X, Y )Z)⊥ = (∇̃′XB)(Y, Z)− (∇̃′Y B)(X, Z) + B′(A(X, Y ), Z)−B′(A(Y, X), Z)

for any X, Y, Z ∈ TpM , which (∇̃′XB)(Y, Z) = ∇′⊥X B′(Y, Z)−B′(∇′XY, Z)−B′(Y,∇′XZ).
Proof

(R
′
(X, Y )Z)⊥ ={∇′X∇

′
Y Z −∇′Y∇

′
XZ −∇′[X,Y ]Z}⊥

={∇′X(∇′Y Z + B′(Y, Z))}⊥ − {∇′Y (∇′XZ + B′(X, Z))}⊥ − {∇′[X,Y ]Z}⊥

=B′(X,∇′Y Z) +∇′⊥X B′(Y, Z)−B′(Y,∇′XZ)−∇′⊥Y B′(X, Z)−B′([X, Y ], Z),

while

B′([X, Y ], Z) =B′(∇XY −∇Y X, Z)

=B′(∇′XY −A(X, Y )−∇′Y X + A(Y, X), Z)

=B′(∇′XY, Z)−B′(∇′Y X, Z)−B′(A(X, Y ), Z) + B′(A(Y, X), Z).

So the equation is found.
Theorem 3.3 (Ricci Equation)

(R
′
(X, Y )ξ)⊥ = R′⊥(X, Y )ξ + B′(Y, Aξ(X))−B′(X, Aξ(Y ))

for any X, Y ∈ TpM , ξ ∈ T⊥p M , which R′⊥(X, Y )ξ = ∇′⊥X ∇′⊥Y ξ −∇′⊥Y ∇′⊥X ξ −∇′⊥[X,Y ]ξ.
Proof

R
′
(X, Y )ξ = ∇′X∇

′
Y ξ −∇′Y∇

′
Xξ −∇′[X,Y ]ξ

= ∇′X(−Aξ(Y ) +∇′⊥Y ξ)−∇′Y (−Aξ(X) +∇′⊥X ξ)−∇′[X,Y ]ξ,

(R
′
(X, Y )ξ)⊥ = −B′(X, Aξ(Y )) +∇′⊥X ∇′⊥Y ξ + B′(Y, Aξ(X))−∇′⊥Y ∇′⊥X ξ −∇′⊥[X,Y ]ξ

= R′⊥(X, Y )ξ) + B′(Y, Aξ(X))−B′(X, Aξ(Y ).

Proposition 3.4 If A(X, Y ) ∈ TpM for any X, Y ∈ TpM , then B′(X, Y ) = B′(Y, X) =
B(X, Y ).
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Proof

A(X, Y ) = ∇′XY −∇XY = ∇′XY −B′(X, Y )−∇XY −B(X, Y ) ∈ TpM,

then B′(X, Y )−B(X, Y ) = 0, B′(X, Y ) = B(X, Y ).
Definition 3.5 We define the mean curvature vector by H ′ = 1

n
trB′. If for any

X ∈ TM ,∇′⊥X H ′ = 0, we call M is a submanifold with parallel mean curvature vector.
It is easy to check that if M is a submanifold of M with parallel mean curvature vector,

we have ‖ H ′ ‖ is a constant. Since for any X ∈ TM , X〈H ′,H ′〉 = 2〈∇′⊥X H ′,H ′〉 = 0.
Definition 3.6 M is a submanifold of M , x ∈ M, ξ ∈ T⊥M , then
(1) If Aξ(x) : TxM → TxM satisfies Aξ(x) = λξ(x)·Id, which λξ(x) is a constant related

to point x, and Id is identity mapping.Then we call x is a umbilical point related to normal
vector ξ.

(2) If for all x ∈ M , x is a umbilical point related to ξ. Then we call M is umbilical
related to normal vector ξ.

(3) If M is umbilical related to any normal vector ξ ∈ T⊥M . Then we call M is a
totally umbilical submanifold.

Proposition 3.7 Let Mn to be a submanifold of M
m

, then M is a totally umbilical
submanifold if and only if B′(X, Y ) = g(X, Y )H ′, ∀X, Y ∈ TpM .

Proof If M is a totally umbilical submanifold, then

B′(X, Y ) =
∑

α

〈B′(X, Y ), Eα〉Eα =
∑

α

〈Aα(X), Y 〉Eα = g(X, Y )
∑

α

λαEα,

H ′ =
1
n

∑
i

B′(Ei, Ei) =
1
n

∑
i

[
∑

α

〈B′(Ei, Ei), Eα〉Eα]

=
1
n

∑
i

(
∑

α

〈Ei, Ei〉λαEα) =
∑

α

λαEα,

B′(X, Y ) =g(X, Y )H ′.

If B′(X, Y ) = g(X, Y )H ′,∀X, Y ∈ TpM , then ∀ξ ∈ T⊥pM ,

〈B′(X, Y ), ξ〉 = g(X, Y )〈H ′, ξ〉 = 〈〈H ′, ξ〉X, Y 〉,

while 〈B′(X, Y ), ξ〉 = 〈Aξ(X), Y 〉, hence Aξ(X) = 〈H ′, ξ〉X.

Proposition 3.8 Let M to be a submanifold of M , then M is a totally geodesic if
and only if M is totally umbilical and H ′ ≡ 0.

Proof If B′ ≡ 0, then ∀X, Y ∈ TpM, ∀ξ ∈ T⊥p M,

0 = 〈B′(X, Y ), ξ〉 = 〈Aξ(X), Y 〉, Aξ(X) = 0,

so M is totally umbilical. By Proposition 3.7, B′ = gH ′, then H ′ ≡ 0.
If M is totally umbilical and H ′ ≡ 0, then B′ = gH ′ = 0, so B′ ≡ 0, M is a totally

geodesic submanifold.
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Under the Levi-Civita connections, the Riemannian curvature R has the following prop-
erties

(i) R(X, Y, Z, W ) = −R(Y, X,Z, W );
(ii) R(X, Y, Z, W ) = −R(X, Y,W,Z) = R(Y, X,W,Z);
(iii) R(X, Y, Z, W ) = R(Z, W,X, Y );
(iv) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0. (3.1)
But under orthogonal connections, (iii), (iv) do not always hold.
We usually denote G(X, Y, Z, W ) , 〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y, Z〉. It is easy to check

that G has the same properties (3.1) as R.
In the rest of this section, we argue Lemma 3.9, Theorem 3.10, Corallary 3.11, and The-

orem 3.12 in 3-dimensional Reimannian manifold equipped with an orthogonal connection
which torsion T is a totally anti-symmetric satisfying T = fW 1 ∧W 2 ∧W 3(W 1,W 2,W 3 is
the dual bases of E1, E2, E3), f is a constant.

Lemma 3.9 (M, g) is under the conditions above, then the first Bianchi identity is
founded, that is to say

R′(X, Y )Z + R′(Y, Z)X + R′(Z, X)Y = 0, ∀X, Y, Z ∈ TpM.

Proof At any point p ∈ M , we choose parallel unit vector fields E1, E2, E3 as the
bases in the neighborhood of p.

Since the curvature tensor R′(X, Y )Z at point p is not related to the extensions of
X|p, Y |p, Z|p, we let the extensions to be

X =
3∑

i=1

XiEi, Y =
3∑

i=1

Y iEi, Z =
3∑

i=1

ZiEi,

which Xi, Y i, Zi are constants, i = 1, 2, 3, then

R′(X, Y )Z + R′(Y, Z)X + R′(Z, X)Y

=
3∑

i,j,k=1

XiY jZk[R′(Ei, Ej)Ek + R′(Ej , Ek)Ei + R′(Ek, Ei)Ej ].

If i, j, k are at least two identical,

R′(Ei, Ej)Ek + R′(Ej , Ek)Ei + R′(Ek, Ei)Ej = 0.

We consider i, j, k are different from each other, then

∇Ei
T (Ej , Ek) = 0 and T (Ei, T (Ej , Ek)) = 0.

Without of loss generality, we let i = 1, j = 2, k = 3,

R′(E1, E2)E3

=R(E1, E2)E3 +∇E1T (E2, E3)−∇E2T (E1, E3) + T (E1, T (E2, E3))− T (E2, T (E1, E3))

=R(E1, E2)E3,
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so R′(E1, E2)E3 + R′(E2, E3)E1 + R′(E3, E1)E2 = 0. That is to say, in the case of i, j, k are
different from each other,

R′(Ei, Ej)Ek + R′(Ej , Ek)Ei + R′(Ek, Ei)Ej = 0.

Therefore

R′(X, Y )Z + R′(Y, Z)X + R′(Z, X)Y = 0, ∀X, Y, Z ∈ TpM.

So property (iv) of (3.1) is founded. Since dimM = 3, we have ∇T = 0, then

〈R′(X, Y )Z, W 〉 = 〈R′(Z,W )X, Y 〉,

corresponding to the (iii) of (3.1).
After all, (3.1) holds for an orthogonal in 3-dimension under the conditions above.
Theorem 3.10 If dimM = 3, under an orthogonal connection above, then the curvature

tensor of M at point p is determined by the all (sections’) sectional curvatures.
Proof Becuase (3.1) holds for R′, we prove the theorem as following. In order to proof

the theorem, we only need to prove that if there is another (0, 4)-tensor R̃′(X, Y, Z, W )
satisfying (3.1), and for any linearly independent vectors X, Y ∈ TpM , it always hold that
R̃′(X, Y,X, Y ) = R′(X, Y,X, Y ), then for any X, Y, Z, W ∈ TpM , we have R̃′(X, Y, Z, W ) =
R′(X, Y, Z, W ). So let S(X, Y, Z, W ) = R̃′(X, Y, Z, W )−R′(X, Y, Z, W ), the argument above
is equivalent to that if for any X, Y ∈ TpM , S(X, Y,X, Y ) = 0, then S ≡ 0. Obviously, S is
a (0,4)-tensor satisfying (3.1). Expanding S(X + Z, Y,X + Z, Y ) = 0, we have

S(X, Y, Z, Y ) = 0, ∀X, Y, Z ∈ TpM.

Then expanding S(X, Y + W,Z, Y + W ) = 0, we have

S(X, Y, Z, W ) + S(X, W,Z, Y ) = 0, ∀X, Y, Z, W ∈ TpM.

Via (iv) S(X, Y, Z, W ) + S(X, Z, W, Y ) + S(X, W, Y, Z) = 0, we obtain

2S(X, Y, Z, W ) = S(X, Z, Y, W ).

Likewise,

2S(X, Z, Y, W ) = S(X, Y, Z, W ).

Hence, for any X, Y, Z, W ∈ TpM , S(X, Y, Z, W ) = 0.

Corollary 3.11 Let (M, g) a Riemannian manifold, dimM = 3, under an orthogonal
connection above, then M is a isotropic manifold if and only if fixing any p ∈ M ,

K(X, Y ) =
R′(X, Y, Z, W )
G(X, Y, Z, W )

is a constant, ∀X, Y, Z, W ∈ TpM.
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Theorem 3.12 M(c) is constant curvature Riemannian manifold which dimM = 3 and
curvature is c, equipped with an orthogonal connection above, denoted by ∇′(the torsion is
T ). Let M be a submanifold of M(c) which is connected and is totally umbilical, then

(1)M is a submanifold with a parallel mean curvature vector, and R⊥(X, Y )ξ ≡ 0 under
the Levi-Civita connection.

(2)M is a submanifold of constant curvature, which curvature is KM = c + ‖H ′‖2.
Proof At first, for convenience, we proof the case of M under the Levi-Civita connection

and n-dimension
Since M is a constant curvature manifold, then

R(X, Y )Z = c(〈Y, Z〉X − 〈X, Z〉Y ), ⇒ (R(X, Y )Z)⊥ = 0.

Via the Codazzi equation (R(X, Y )Z)⊥ = (∇̃XB)(Y, Z)− (∇̃Y B)(X, Z), we have

(∇̃XB)(Y, Z) = (∇̃Y B)(X, Z).

Using Proposition 3.7, B(X, Y ) = 〈X, Y 〉H, we have

(∇̃XB)(Y, Z) =∇⊥XB(Y, Z)−B(∇XY, Z)−B(Y,∇XZ)

=∇⊥X(〈Y, Z〉H)− 〈∇XY, Z〉H − 〈Y,∇XZ〉H
=(X〈Y, Z〉 − 〈∇XY, Z〉 − 〈Y,∇XZ〉)H − 〈Y, Z〉∇⊥XH

=〈Y, Z〉∇⊥XH,

(∇̃Y B)(X, Z) =〈Y, Z〉∇⊥XH.

So

〈Y, Z〉 ∇⊥XH = 〈X, Z〉∇⊥Y H for any X, Y, Z ∈ TpM.

We pick Y = Z 6= 0, X ⊥ Y , then ∇⊥XH = 0 for any X, Y ∈ TpM, ξ ∈ T⊥p M , i.e., H is
parallel related to T⊥p M .

Next, proof of R⊥ ≡ 0.
Since M is constant curvature manifold, then R(X, Y )ξ = c(〈Y, ξ〉X − 〈X, ξ〉Y ). We

have (R(X, Y )ξ)⊥ = 0, while B = B(X, λξY ) = λξB(X, Y ) = B(Y, Aξ(X)).
Via the Ricci equation (R(X, Y )ξ)⊥ = R⊥(X, Y )ξ + B(Y, Aξ(X)) − B(X, Aξ(Y )), we

have R⊥(X, Y )ξ = 0.
(2) Via the Gauss equation, ∀X, Y, Z, W ∈ TpM , we have

R(X, Y, Z, W ) =R(X, Y, Z, W ) + 〈B(X, Z), B(Y, W )〉 − 〈B(X, W ), B(Y, Z)〉
=c(〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y, Z〉) + (〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y, Z〉)‖H‖2

=(c + ‖H‖2)〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y, Z〉,

so M is a constant curvature manifold with sectional curvature c+‖H‖2, while T is a totally
anti-symmetric tensor, T is also a totally anti-symmetric tensor. Because of dimM = 3,
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dimM 6 2, T ≡ 0. So the Codazzi equation is the same as the case of the Levi-Civita
connection, i.e.,

(R
′
(X, Y )Z)⊥ = (∇̃′XB)(Y, Z)− (∇̃′Y B)(X, Z).

Combined with Corollary 3.11, we can get the result.
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黎曼流形在正交联络下的全脐点子流形

李凯鹏,王旭升

(武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了正交联络下子流形基本方程以及在全脐点子流形中的应用. 利用Cartan的方法将

挠率张量分解成三个部分, 计算得到正交联络下的三个基本方程, 并考虑一个特殊的正交联络, 证明了其黎

曼曲率会有类似于Levi-Civita 联络下的性质. 利用基本方程得到常曲率空间中的全脐点子流形的性质, 推

广了Levi-Civita联络下的相应结果.
关键词: 正交联络; 黎曼流形的基本方程; 子流形; 脐点
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