
Vol. 36 ( 2016 )
No. 4

数 学 杂 志
J. of Math. (PRC)

THE FEFFERMAN INEQUALITY AND DUAL

THEOREM FOR QUASI-MARTINGALES

LIU Hui-fang1, ZHU Yao-sheng2

(1.Department of Basic Courses, Henan Institute of Technology, Xinxiang 453000, China)
(2.School of Mathematics and Information Science, Xinxiang University, Xinxiang 453000, China)

Abstract: In this paper, the Fefferman inequality and dual theorem for quasi-martingales

are studied. By using the correspond results for martingales and the Doob’s decomposition, the

Fefferman inequality for martingales is extended to the quasi-martingale setting and the dual space

of quasi-martingale Hardy space Ĥp (1 < p < ∞) is described.
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1 Introduction

The history of martingale theory goes back to the early fifties when Doob pointed out
the connection between martingales and analytic function. In the course of its development,
inequalities of martingale spaces were a concerned research hot spot. People always study
the properties operators via the corresponding martingale inequalities, whereby we obtain
the relationship between two operators, further, the inclusions of many martingale spaces
are established.

Quasi-martingales is an important generalization of martingales. Today, the theory
has achieved a satisfactory development and it can perfectly well be applied in complex
analysis and in the theory of classical Hardy spaces. In Section 3, we prove the Fefferman
inequality for quasi-martingales. Let us briefly describe our main inequality. Let Ĥp be the
quasi-martingale Hardy space and 1 ≤ p ≤ 2, then

|E(fnϕn)| ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
, ϕ ∈2 K̂p′ ,

where 2K̂p′ is a special quasi-martingale space. In Section 4 we describe the dual space of
Ĥp. Note that the dual space of martingale Hardy space Hp is Hp′ . However, the case of
quasi-martingale is quite different. Let 1 < p < ∞. We prove the dual space of Ĥp can be
given with the norm

‖φ‖ := ‖r‖Hp′ + ‖s‖B̂Dp′
,
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where B̂Dp′ is a subspace of l∞(Lp′) and φn = rn + sn(n ≥ 1).

2 Preliminaries

Let (Ω,F ,P) be a probability space and let (Fn, n ≥ 1) a non-decreasing sequence of
σ-algebras. The expectation operator and the conditional expectation operator are denoted
by E and En(·). We briefly write Lp instead of the Lp(Ω,F ,P) space while the norm (or
quasinorm) of this space is defined by

‖f‖p := (E|f |p)1/p(0 < p ≤ ∞).

A integrable sequence f = (fn)n≥1 is said to be a martingale if
(i) it is adapted, i.e., fn is Fn, measurable for all n ≥ 1;
(ii) En(fn+1) = fn for all n ≥ 1.

If additionally, f = (fn)n≥1 ⊂ Lp for some 1 ≤ p ≤ ∞, we call f an Lp-martingale. We
refer to [1] for more information on martingales.

Now we turn to the definition of quasi-martingales. Let 1 ≤ p ≤ ∞. An adapted
sequence f = (fn)n≥1 in L1 is called a p quasi-martingale with respect to (Fn, n ≥ 1) if

Vp(f) :=
∞∑

n=1

‖En−1(dfn)‖p < ∞. (2.1)

If in addition f = (fn)n≥1 ⊂ Lp for some 1 ≤ p ≤ ∞, we call f an Lp-quasi-martingale. In
this case, we set

‖f‖p := sup
n
‖fn‖p + Vp(f).

If ‖f‖p < ∞, f is called a bounded Lp-quasi-martingale. The quasi-martingale space L̂p is
defined as the space of all bounded Lp-quasi-martingales, and is equipped with the norm
‖ · ‖p.

In the following we describe the quasi-martingale Hardy space which is needed in the
main results in this paper. For 1 ≤ p < ∞, let f = (fn)n≥1 be a p-quasi-martingale,

Ĥp = {f = (fn) : ‖f‖Ĥp
= ‖(

∞∑
n=1

|fn|2) 1
2 ‖p + Vp(f) < ∞}.

Note that a basic fact respect to quasi-martingales is that each p-quasi-martingale can
be decomposed as a sum of a martingale and a predicable quasi-martingale which we call
Doob’s decomposition. Doob’s decomposition plays an important role in this paper.

Lemma 2.1 (Doob’s decomposition) (see [6]) Let 1 ≤ p ≤ ∞. Each bounded Lp-quasi-
martingale f = (fn)n≥1 can be uniquely decomposed as a sum of two sequences g = (gn)n≥1

and h = (hn)n≥1, where g = (gn)n≥1 is a bounded Lp-martingale and h = (hn)n≥1 is a
predicable p-quasi-martingale with h1 = 0 such that dhn = En−1(dhn).

In the sequel, we use p′ to denote the conjugate index of p for 1 ≤ p ≤ ∞.
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3 The Fefferman Inequality for Quasi-Martingales

Our main result in this section is concerned with the Fefferman inequality for quasi-
martingales. We first recall the Fefferman inequality for martingales (see Theorem 2.2.2 of
[2]). Let f ∈ Hp, 1 ≤ p ≤ 2, ϕ ∈2 Kp′ . Then

|E(fnϕn)| ≤
√

2
p
‖f‖Hp

‖ϕ‖2Kp′ , ∀n.

In this paper, we extend the inequality to the quasi-martingale setting. First we give the
definition of 2K̂p.

Definition 3.1 Let 2 ≤ p ≤ ∞, f = (fn)n≥1 be a L1-quasi-martingale, f is said to
be in 2K̂p, if there exists γ ∈ Lp

+ such that

E(|fm − fn−1|2|Fn) ≤ E(γ2|Fn),∀m ≥ n ≥ 1.

We define a norm in 2K̂p by

‖f‖
2K̂p

= inf{‖γ‖p + Vp(f) : γ runs through all possible ones}.

Now we are ready to state our main result.
Theorem 3.2 Let f = (fn)n≥1 ∈ Ĥp, 1 ≤ p ≤ 2, ϕ ∈ 2K̂p′ . Then

|E(fnϕn)| ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
, ∀n,

where C is a universal constant.
Proof Let fn = gn + hn(n ≥ 1) be the Doob’s decomposition of f . Then g = (gn)n≥1

is a martingale and
∞∑

n=1

‖dhn‖p < ∞. Noting that (
∞∑

n=1

|dhn|2) 1
2 ≤

∞∑
n=1

|dhn|, we have that

‖(
∞∑

n=1

|dhn|2) 1
2 ‖p ≤

∞∑
n=1

‖dhn‖p < ∞.

Thus h = (hn)n≥1 ∈ Hp and ‖h‖Hp
≤ 2

∞∑
n=1

‖dhn‖p. Therefore, we obtain

‖g‖Hp
≤ ‖f‖Hp

+ ‖h‖Hp
≤ C‖f‖Hp

. (3.1)

Let ϕn = rn+sn(n ≥ 1) be the Doob’s decomposition of ϕ. We must have that s = (sn)n≥1 ∈
2K̂p′ . Indeed, by the inequality |sm − sn−1| ≤

∞∑
n=1

|dsn|,∀m ≥ n and the definition of the

space 2K̂p′ , we have that

‖s‖
2K̂p′

≤ ‖
∞∑

n=1

|dsn|‖p′ +
∞∑

n=1

‖dsn‖p′

≤ 2
∞∑

n=1

‖dsn‖p′ < ∞.
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Thus we have that s = (sn)n≥1 ∈2 K̂p′ . Therefore, we get that

‖r‖2Kp′ ≤ ‖ϕ‖
2K̂p′

+ ‖s‖
2K̂p′

≤ C‖ϕ‖
2K̂p′

. (3.2)

By the Fefferman inequality for martingales and Hölder’s inequality, we have

|E(fnϕn)| = |E(gn + hn)(rn + sn)|
≤ |E(gnrn)|+ |E(hnrn)|+ |E(hnsn)|+ |E(gnsn)|
≤

√
2
p
‖g‖Hp

‖r‖2Kp′ + ‖hn‖p‖rn‖p′ + ‖hn‖p‖sn‖p′ + ‖gn‖p‖sn‖p′

= I+II+III+IV.

(3.3)

It follows from (3.1) and (3.2) that

I ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
. (3.4)

To treat II, we first prove the inequality

‖rn‖p′ ≤ C‖r‖2Kp′ . (3.5)

For p′ > 2, by the equality Hp′ = 2Kp′ (see Theorem 2.2.2 and Theorem 2.2.5 of [2]) and the
Burkholder-Gundy inequalities, we get inequality (3.5). For p′ = 2, since r = (rn)n≥1 ∈ 2K̂2,
there exists γ ∈ L2

+ such that

E(|rm − rn−1|2|Fn) ≤ E(γ2|Fn),∀m ≥ n ≥ 1.

Then
E(|rm|2|F0) = E(|rm − r−1|2|F0) ≤ E(|γ|2|F0).

It is easy to see that for any n ≥ 1

(E(|rn|2) 1
2 ≤ (E(|rm+1 − rn|2) 1

2 + (E(|rm+1|2) 1
2 ≤ (Eγ2)

1
2 + (Eγ2)

1
2 ≤ 2(Eγ2)

1
2 .

Thus we have that ‖rn‖2 ≤ C‖r‖2K2 . Using (3.5) and (3.2), we get that

II ≤ C

∞∑
n=1

‖dhn‖p‖r‖2Kp′ ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
. (3.6)

Now we turn to estimate the two last term separately. By the definitions of the spaces Ĥp

and 2K̂p′ , we have that

III ≤ C

∞∑
n=1

‖dhn‖p

∞∑
n=1

‖dsn‖p′ ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
. (3.7)

By the Burkholder-Gundy inequalities and Davis inequalities, we get that ‖gn‖p ≤ C‖g‖Hp
.

Thus we have that

IV ≤ C‖g‖Hp

∞∑
n=1

‖dsn‖p′ ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
. (3.8)
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Putting (3.3), (3.4), (3.6), (3.7) and (3.8) together, we obtain that

|E(fnϕn)| ≤ C‖f‖Ĥp
‖ϕ‖

2K̂p′
.

4 The Dual Space of Quasi-Martingale Hardy Space Ĥp

In this section we describe the dual space of quasi-martingale Hardy space Ĥp. Note
that the dual space of martingale Hardy space Hp is Hp′ . It is natural to ask whether
the preceding result can be generalized to the quasi-martingale setting. The answer is
unfortunately negative in general. Indeed, the dual space of Ĥp which is introduced in
Theorem 4.2 is difficult from Ĥp′ . Now we start by introducing a special space which is
needed in our main result in this section.

Definition 4.1 Denote by B̂Dp (1 ≤ p ≤ ∞) the space of all predicable sequences
f = (fn)n≥1 (with f1 = 0) for which

‖f‖B̂Dp
:= sup

n
‖dfn‖p.

Now we are ready to state the following result.
Theorem 4.2 The dual space of Ĥp ( 1 < p < ∞) can be given with the norm

‖φ‖ := ‖r‖Hp′ + ‖s‖B̂Dp′
,

where φn = rn + sn(n ≥ 1).
Proof Let f = (fn)n≥1 ∈ Ĥp and fn = gn + hn(n ≥ 1) be the Doob’s decomposition

of f . Define a linear functional on Ĥp by

lφ(f) = E(
∞∑

n=1

drndgn) +
∞∑

n=1

E(dsndhn),

where r = (rn)n≥1 ∈ Hp′ , s = (sn)n≥1 ∈ B̂Dp′ and φn = rn + sn(n ≥ 1). By Hölder’s
inequality, we have that

lφ(f) ≤ E((
∞∑

n=1

|drn|2) 1
2 (

∞∑
n=1

|dgn|2) 1
2 ) +

∞∑
n=1

(‖dsn‖p′‖dhn‖p)

≤ ‖(
∞∑

n=1

|drn|2) 1
2 ‖p′‖(

∞∑
n=1

|dgn|2) 1
2 )‖p + sup

n
‖dsn‖p′

∞∑
n=1

‖dhn‖p

= ‖r‖Hp′‖g‖Hs
p

+ ‖s‖B̂Dp′
Vp(f)

≤ ‖f‖Ĥp
(‖r‖Hp′ + ‖s‖B̂Dp′

).

Namely, lφ(f) is a bounded linear functional.
Conversely, assume that l is an arbitrary bounded linear functional on Ĥp. It is easy

to see that l is also a bounded linear functional on Hp. Since Hp
∗ = Hp′ , there exists a
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sequence r = (rn)n≥1 ∈ Hp′ such that

l(r) = E(
∞∑

n=1

drndgn) (g = (gn)n≥1 ∈ Hp)

and

‖r‖Hp′ ≤ C‖l‖. (4.1)

On the other hand, let Qp be the subspace of l1(Lp) of all sequences db = (dbn)n≥1 such
that b = (bn)n≥1 is a predictable quasi-martingale in Ĥp with b1 = 0. Then we have that

‖db‖l1(Lp) ≤ ‖b‖Ĥp
≤ 2‖db‖l1(Lp)

for any db = (dbn)n≥1 ∈ Qp. Define a functional on Qp by

l2(db) = l(b), db = (dbn)n≥1 ∈ Qp.

Then l2 is a continuous linear functional on Qp and ‖l2‖ ≤ 2‖l‖. By the Hahn-Banach
theorem, l2 extends to a functional on l1(Lp). Since (l1(Lp))∗ = l∞(Lp′), the representation
theorem allows us to find a sequence s′ = (s′n)n≥1 ∈ l∞(Lp′) such that

l2(s) =
∞∑

n=1

E(s′nhn) (h = (hn)n≥1 ∈ l1(Lp)) (4.2)

and ‖s′‖l∞(Lp′ ) = supn ‖s′n‖p′ ≤ C‖l2‖. Set s1 = 0 and sn =
n∑

k=1

Ek−1(s′k)(n ≥ 2). For any

db = (dbn)n≥1 ∈ Qp, noting that db = (dbn)n≥1 is predicable, it follows from (4.2) that

l2(db) =
∞∑

n=1

E(En−1(s′ndbn))

=
∞∑

n=1

E(dbnEn−1(s′n))

=
∞∑

n=1

E(dsndbn).

It remains to show that s = (sn)n≥1 ∈ B̂Dp′ . This is true since s = (sn)n≥1 is predicable
with s1 = 0 and

‖s‖B̂Dp′
= sup

n
‖dsn‖p′ ≤ sup

n
‖s′n‖p′ ≤ C‖l2‖ ≤ C‖l‖. (4.3)

Putting (4.1) and (4.3) together, we have that

‖r‖Hp′ + ‖s‖B̂Dp′
≤ C‖l‖.
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拟鞅的Fefferman不等式和对偶定理

刘慧芳1,朱耀生2

(1.河南工学院基础部, 河南新乡 453000)

(2.新乡学院数学与信息科学学院, 河南新乡 453000)

摘要: 本文讨论了拟鞅的Fefferman不等式和Hardy空间的对偶空间. 利用鞅的相关结果和Doob分解

的方法, 把鞅的Fefferman不等式推广到拟鞅情形, 并描述了拟鞅的Hardy空间Ĥp在1 < p < ∞ 时的对偶空
间.
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MR(2010)主题分类号: 60G46 中图分类号: O211.4


