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Abstract: In this paper, the Fefferman inequality and dual theorem for quasi-martingales
are studied. By using the correspond results for martingales and the Doob’s decomposition, the
Fefferman inequality for martingales is extended to the quasi-martingale setting and the dual space
of quasi-martingale Hardy space ﬁp (1 < p < 00) is described.

Keywords: quasi-martingale; Hardy space; dual space; norm

2010 MR Subject Classification: 60G46

Document code: A Article ID: 0255-7797(2016)04-0683-07

1 Introduction

The history of martingale theory goes back to the early fifties when Doob pointed out
the connection between martingales and analytic function. In the course of its development,
inequalities of martingale spaces were a concerned research hot spot. People always study
the properties operators via the corresponding martingale inequalities, whereby we obtain
the relationship between two operators, further, the inclusions of many martingale spaces
are established.

Quasi-martingales is an important generalization of martingales. Today, the theory
has achieved a satisfactory development and it can perfectly well be applied in complex
analysis and in the theory of classical Hardy spaces. In Section 3, we prove the Fefferman
inequality for quasi-martingales. Let us briefly describe our main inequality. Let ﬁp be the
quasi-martingale Hardy space and 1 < p < 2, then

E(fa70)| < Clf g, e,z €2 Ry,

where gl?p/ is a special quasi-martingale space. In Section 4 we describe the dual space of
]E\Ip. Note that the dual space of martingale Hardy space H,, is H,,. However, the case of
quasi-martingale is quite different. Let 1 < p < oo. We prove the dual space of I/—jp can be

given with the norm

ol == llrlla, +lslzp,,»
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where El\)p/ is a subspace of [ (L,) and ¢, =1, + s,(n > 1).
2 Preliminaries

Let (2, F,P) be a probability space and let (F,,n > 1) a non-decreasing sequence of
o-algebras. The expectation operator and the conditional expectation operator are denoted
by E and E,(-). We briefly write L, instead of the L,(Q,F,P) space while the norm (or
quasinorm) of this space is defined by

11l = (EIfP)Y2(0 < p < 00).

A integrable sequence f = (f,)n>1 is said to be a martingale if

(i) it is adapted, i.e., f, is F,, measurable for all n > 1;

(ii) En(fas1) = fn forall n>1.

If additionally, f = (f,)n>1 C L, for some 1 < p < oo, we call f an L,-martingale. We
refer to [1] for more information on martingales.

Now we turn to the definition of quasi-martingales. Let 1 < p < oco. An adapted

sequence f = (f,)n>1 in Ly is called a p quasi-martingale with respect to (F,,n > 1) if

Vo(f) =D N Eua(dfa)llp < oo (2.1)

If in addition f = (f,)n>1 C L, for some 1 < p < oo, we call f an L,-quasi-martingale. In

this case, we set

1/ llp = sup [l £ully + Vo (f)-

If || fll, < oo, f is called a bounded L,-quasi-martingale. The quasi-martingale space fp is
defined as the space of all bounded L,-quasi-martingales, and is equipped with the norm
-l

In the following we describe the quasi-martingale Hardy space which is needed in the

main results in this paper. For 1 <p < o0, let f = (f,)n>1 be a p-quasi-martingale,

Hy={f = (fa) : 1z, = 1O 1fal®)? llp + Vi(f) < 00}

Note that a basic fact respect to quasi-martingales is that each p-quasi-martingale can
be decomposed as a sum of a martingale and a predicable quasi-martingale which we call
Doob’s decomposition. Doob’s decomposition plays an important role in this paper.

Lemma 2.1 (Doob’s decomposition) (see [6]) Let 1 < p < co. Each bounded L,-quasi-
martingale f = (f,),>1 can be uniquely decomposed as a sum of two sequences g = (gn)n>1
and h = (hy)n>1, where ¢ = (gn)n>1 is a bounded L,-martingale and h = (hy),>1 is a
predicable p-quasi-martingale with hy; = 0 such that dh,, = E,_1(dh,).

In the sequel, we use p’ to denote the conjugate index of p for 1 < p < oc.
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3 The Fefferman Inequality for Quasi-Martingales

Our main result in this section is concerned with the Fefferman inequality for quasi-
martingales. We first recall the Fefferman inequality for martingales (see Theorem 2.2.2 of
[2]). Let fe Hy,, 1 <p<2, ¢ €y K,. Then

. 2
Bl < \/;nan,,nsaHQK,,/, vn.

In this paper, we extend the inequality to the quasi-martingale setting. First we give the
definition of gf?p.

Definition 3.1 Let 2 <p < oo, f = (fu)n>1 be a Li-quasi-martingale, f is said to
be in 3K, if there exists y € L% such that

E(|fm = fa-aP|F2) < E(?|Fn),Ym > n > 1.
We define a norm in 2[?1, by
||f||2f(p = inf{||v||, + V,(f) : v runs through all possible ones}.

Now we are ready to state our main result.
Theorem 3.2 Let f = (fn)n>1 € flp, 1<p<2,p€ 2[?1,/. Then

B0 < ClflaIelg,. Vo,

where C' is a universal constant.
Proof Let f, = g, + h,(n > 1) be the Doob’s decomposmon of f. Then g = (gn)n>1

is a martingale and Z |dhnl|l, < 0. Noting that (Z |dh,|?)z < Z |dh.,|, we have that

n=1 n=1 n=1

1O 1dhal*) 2 [l < Y dhally < oo
n=1 n=1
Thus h = (hyp)n>1 € Hy and ||h]|g, <2 ) ||dh,||,. Therefore, we obtain
n=1

lgllz, < [fllm, + blla, < Cllflm,- (3.1)

Let ¢,, = r,+5,(n > 1) be the Doob’s decomposition of ¢. We must have that s = (s,,),>1 €
Ql?p/. Indeed, by the inequality [s;, — sn—1| < >_ |ds,|,¥m > n and the definition of the

n=1
space 2K/, we have that

o0 o0
sz, < 1 ldsallly + > lldsall,
n=1 n=1
(oo}
2 " |ldsylly < oo
n=1

IN
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Thus we have that s = (5,,)n>1 €2 I?p/. Therefore, we get that

Il < llel,z, +lsl,z, < Cliel,z, (3:2)

By the Fefferman inequality for martingales and Holder’s inequality, we have

[E(fapn)l = [E(gn + ha)(Tn +52))
< NE(gnTa)l + [E(hnTa)| + |E(hnSn)| + | E(gn5n)] (3.3)
< \/gllgllHPIITHZKp, F [1Bnllpllrally + hallpllsnlly + llgnllpllsnlly '
= I4+II4+III+1V.
It follows from (3.1) and (3.2) that
< Cllfllg,lel,z,,- (3.4)
To treat II, we first prove the inequality
[rnlly < Clirll,x,, - (3.5)

For p’ > 2, by the equality H, = 2K, (see Theorem 2.2.2 and Theorem 2.2.5 of [2]) and the
Burkholder-Gundy inequalities, we get inequality (3.5). For p’ = 2, since r = (7,)n>1 € 2K,
there exists v € L? such that

E(|rm — rn-1*|Fn) < E(Y?|Fn),¥Ym >n > 1.
Then
E(|rm|?Fo) = E(|rm — 71[?1F0) < E(I7[*|Fo).

It is easy to see that for any n > 1
(E(Iral)? < (B(rmi1 = ral’)? + (B(Irmi1 )2 < (BY*)? + (BE7)? < 2(E7)7.

Thus we have that [|r,||2 < C||7||,x,- Using (3.5) and (3.2), we get that

I<CY ldhallplirilx, < Cllfla,lel,z,- (3.6)
n=1

o~

Now we turn to estimate the two last term separately. By the definitions of the spaces H,
and 2K, we have that

NI<CY dhally Y lldsally < Cllfllg, ez, (3.7)
n=1 n=1

By the Burkholder-Gundy inequalities and Davis inequalities, we get that ||g,||, < C|g| #, -
Thus we have that

o

IV < Cllgll, Y ldsally < Clflz, el - (3.8)

n=1
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Putting (3.3), (3.4), (3.6), (3.7) and (3.8) together, we obtain that

[E(fn@n)l < Cllfllg, el ,-

4 The Dual Space of Quasi-Martingale Hardy Space ffp

In this section we describe the dual space of quasi-martingale Hardy space flp Note
that the dual space of martingale Hardy space H, is H,. It is natural to ask whether
the preceding result can be generalized to the quasi-martingale setting. The answer is
unfortunately negative in general. Indeed, the dual space of flp which is introduced in
Theorem 4.2 is difficult from flp/. Now we start by introducing a special space which is
needed in our main result in this section.

Definition 4.1 Denote by E]_\)p (1 < p < o0) the space of all predicable sequences
f = (fa)n>1 (with f; = 0) for which

1fl5p, = sup lldfnllp-

Now we are ready to state the following result.
Theorem 4.2 The dual space of flp (1< p<o0)can be given with the norm

ol == llrlla, +lslzp,,»

where ¢, =1, + s,(n > 1).
Proof Let f = (fu)n>1 € ﬁp and f, = gn + h,(n > 1) be the Doob’s decomposition
of f. Define a linear functional on ﬁp by

lo(f) = BQY_ dradgy) + Y E(dsydhy),

where 7 = (1p)n>1 € Hy, s = (Sp)n>1 € El\)p/ and ¢, = r, + s,(n > 1). By Holder’s
inequality, we have that

L(f) < B(OQ_ldra)2 O ldgal*)2) + > (ldsally | dhnll,)
n=1 n=1 n=1
< ||<Z|dTn|2>§ P’ (Z|d9n|2)§)”p+sup”d5n p’ZHdhn”p
n=1 n=1 " n=1
= Arlla, gl +sllzp,, Va(F)
<

< Wl (g, + lsllzp,, ).

Namely, l4(f) is a bounded linear functional.
Conversely, assume that [ is an arbitrary bounded linear functional on H,. It is easy

to see that [ is also a bounded linear functional on H,. Since H," = H,, there exists a
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sequence 7 = (,)n>1 € Hp such that

= B()_ dradgs) (9= (gn)n>1 € Hy)

and
([, < CI- (4.1)

On the other hand, let @, be the subspace of I;(L,) of all sequences db = (db,),>1 such
that b = (b,),>1 is a predictable quasi-martingale in flp with b; = 0. Then we have that

dbllay 2,y <1101, < 2[ldblluy L,
for any db = (dby,)n>1 € Q. Define a functional on @, by
lo(db) = 1(b), db= (dby)ns1 € Q.

Then [y is a continuous linear functional on @, and ||lz| < 2||l||. By the Hahn-Banach
theorem, I extends to a functional on l;(L,). Since (I1(L,))* = (L), the representation

theorem allows us to find a sequence s" = (s;,),>1 € loo(L,) such that
la(s) =Y E(sphn) (h=(hn)nz1 € Li(Ly)) (4.2)
n=1

and [|8'[li(z,,) = sup, [[s, ]y < Clll2]|. Set s; = 0 and s, = Z Ex_1(s},)(n > 2). For any
db = (dbn)n>1 € @Qp, noting that db = (db,,),>1 is predicable, 1t follows from (4.2) that

L(d) = 3 E(BE, 1(s.dby))

= Y E(db,E,_i(s))

n=1

= S E(dsndb,).
n=1

It remains to show that s = (s,)n>1 € El\)p/. This is true since s = (s,),>1 is predicable
with s; = 0 and

Isl5p,, = sup lldsall,y < sup s, ], < Clliafl < CJl2]l- (4.3)
Putting (4.1) and (4.3) together, we have that

17l +lIsllzp,, < CII-
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