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Abstract: In this paper, we considered the rank range of the solutions of a class of matrix

equations. By applying the singular value decomposition of matrix and the properties of Frobenius

matrix norm, we obtained the extremal rank and the solution expression of under rank constrained.

Some special cases of theses problems are considered, and some results are obtained.
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1 Introduction

We first introduce some notations to be used. Let Cn×m denote the set of all n × m

complex matrices; Rn×m denote the set of all n × m real matrices; ORn×n be the sets of
all n × n orthogonal matrices. The symbols AT , A+, A−, R(A), N(A) and r(A) stand
for the transpose, Moore-Penrose generalized inverse, any generalized inverse, range(column
space), null space and rank of A ∈ Rn×m, respectively. The symbols EA and FA stand for
the two projectors EA = I − AA− and FA = I − A−A induced by A. The matrices I and
0, respectively, denote the identity and zero matrices of sizes implied by context. We use
〈A,B〉 = trace(BT A) to define the inner product of matrices A and B in Rn×m. Then Rn×m

is a Hilbert inner product space. The norm of a matrix generated by the inner product is
the Frobenius norm ‖ · ‖, that is ‖A‖ =

√
〈A,A〉 = (trace(AT A))

1
2 .

Researches on extreme ranks of solutions to linear matrix equations was actively ongoing
for more than 30 years. For instance, Mitra [1] considered solutions with fixed ranks for the
matrix equations AX = B and AXB = C; Mitra [2] gave common solutions of minimal rank
of the pair of matrix equations AX = C,XB = D; Uhlig [3] gave the maximal and minimal
ranks of solutions of the equation AX = B; Mitra [4] examined common solutions of minimal
rank of the pair of matrix equations A1X1B1 = C1 and A2X2B2 = C2. By applying the
matrix rank method, recently, Tian [5] obtained the minimal rank of solutions to the matrix
equation A = BX +Y C. In 2003, Tian in [6, 7] investigated the extremal ranks solutions to
the complex matrix equation AXB = C and gave some applications. In 2006, Lin and Wang
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in [8] studied the extreme ranks of solutions to the system of matrix equations A1X = C1,
XB2 = C2, A3XB3 = C3 over an arbitrary division ring, which was investigated in [9] and
[10]. Recently, Xiao et al. considered the extremal ranks, i.e. maximal and minimal ranks
to the equation AX = B (see, e.g. [11–15]).

In this paper, we consider the extremal rank solutions of the matrix equations

AX = B,XC = D, (1.1)

where A ∈ Rp×m, B ∈ Rp×n, C ∈ Rn×q, D ∈ Rm×q are given matrices.
The paper is organized as follows. At first, we will introduce several lemmas which

will be used in the latter sections. In Section 3, applying the matrix rank method, we will
discuss the rank of the general solution to the matrix equations AX = B,XC = D, where
A ∈ Rp×m, B ∈ Rp×n, C ∈ Rn×q, D ∈ Rm×q are given matrices.

2 Some Lemmas

Lemma 2.1 (see [6]) Let A, B, C, and D be m × n, m × k, l × n, l × k matrices,
respectively. Then

r

[
A

C

]
= r(A) + r(C(I −A−A)), (2.1)

r

[
A B

C D

]
= r

[
A

C

]
+ r [A B]− r(A) + r[EG(D − CA−B)FH ], (2.2)

where G = CFA and H = EAB.
Lemma 2.2 (see [16]) Given A ∈ Rp×m, B ∈ Rp×n, C ∈ Rn×q, D ∈ Rm×q. Let the

singular value decompositions of A be,

A = U

[
Σ 0
0 0

]
V T = U1ΣV T

1 , (2.3)

where U = (U1, U2) ∈ ORp×p, U1 ∈ Rp×k, V = (V1, V2) ∈ ORm×m, V1 ∈ Rm×k, k = r(A),
Σ = diag(σ1, σ2, · · ·σk), σ1 ≥ · · · ≥ σk > 0. Let the singular value decompositions of B be,

C = P

[
Γ 0
0 0

]
QT = P1ΓQT

1 , (2.4)

where P = (P1, P2) ∈ ORn×n, P1 ∈ Rn×t, Q = (Q1, Q2) ∈ ORq×q, Q1 ∈ Rq×t, t = r(C),
Γ = diag(γ1, γ2, · · · γt), γ1 ≥ · · · ≥ γt > 0. Then the matrix equations (1.1) have a solution
in Rm×n if and only if

BC = AD, AA+B = B, DC+C = C. (2.5)

Moreover, its general solution can be expressed as

X = DC+ + A+B −A+ADC+ + (I −A+A)Z(I − CC+),∀Z ∈ Rm×n. (2.6)
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Lemma 2.3 Suppose that matrix equations (1.1) is consistent. Let the singular value
decompositions of A and C given by (2.3) and (2.4), respectively. Denote by X the solution
of matrix equations (1.1). Then matrix V T XP can be partitioned into

V T XP =

(
X11 X12

X21 X22

)
, (2.7)

where

X11 = V T
1 XP1 = Σ−1UT

1 BP1 ∈ Rk×t, X12 = V T
1 XP2 = Σ−1UT

1 BP2 ∈ Rk×(n−t),

X21 = V T
2 XP1 = V T

2 DQ1Γ−1 ∈ R(m−k)×t, X22 ∈ R(m−k)×(n−t)

is arbitrary.
Proof By (2.6), Z is arbitrary, we claim from (2.3), (2.4) and (2.7) that X22 is arbitrary

too. We omit the proof.

3 The Extremal Rank Solutions to (1.1)

Assume the matrix equations (1.1) has a solution X ∈ Rm×n, and the general solution
can be written as

X = V

[
X11 X12

X21 X22

]
P T , ∀X22 ∈ R(m−k)×(n−t), (3.1)

where

X11 = Σ−1UT
1 BP1 = V T

1 XP1, X12 = Σ−1UT
1 BP2 = V T

1 XP2,

X21 = V T
2 DQ1Γ−1 = V T

2 XP1.

Let G1 = X21FX11 , H1 = EX11X12. Assume the singular value decomposition of G1 and
H+

1 be, respectively,

G1 = UG1

(
Σ1 0
0 0

)
V T

G1
= U11Σ1V

T
11, (3.2)

where UG1 = (U11, U12) ∈ OR(m−k)×(m−k), U11 ∈ R(m−k)×k1 , VG1 = (V11, V12) ∈ ORk×k,
V11 ∈ Rk×k1 , k1 = r(G1), Σ1 = diag(α11, α21, · · ·αk11), α11 ≥ · · · ≥ αk11 > 0.

H+
1 = PH+

1

(
Γ1 0
0 0

)
QT

H+
1

= P11Γ1Q
T
11, (3.3)

where PH+
1

= (P11, P12) ∈ OR(n−t)×(n−t), P11 ∈ R(n−t)×t1 , QH+
1

= (Q11, Q12) ∈ ORk×k,
Q11 ∈ Rk×t1 , t1 = r(H+

1 ), Γ1 = diag(β11, β21, · · ·βt11), β11 ≥ · · · ≥ βt11 > 0.
Now we can establish the existence theorems as follows.
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Theorem 3.1 Given A ∈ Rp×m, B ∈ Rp×n, C ∈ Rn×q, D ∈ Rm×q. the singular value
decompositions of the matrices A, C and G1, H+

1 are given by (2.3), (2.4) and (3.2), (3.3),
respectively. Then equations (1.1) has a solution X if and only if

BC = AD, AA+B = B, DC+C = C. (3.4)

In this case, let Ω be the set of all solutions of equations (1.1), then the extreme ranks of X

are as follows:
(1) The minimal rank of X is

min
X∈Ω

r(X) = r(B) + r(D)− r(BC). (3.5)

The general expression of A satisfying (3.5) is

X = X0 + V2U11U
T
11Ỹ P11P

T
11P

T
2 , (3.6)

where X0 = DC+ + A+B − A+ADC+ + (I − AA+)DC+(A+BCC+)+A+B(I − CC+), and
Ỹ ∈ R(m−k)×(n−t) is arbitrary matrix.

(2) The maximal rank of X is

max
X∈Ω

r(X) = min(m + r(B)− r(A), n + r(D)− r(C)). (3.7)

The general expression of X satisfying (3.7) is

X = X0 + V2Y P T
2 , (3.8)

where

X0 = DC+ + A+B −A+ADC+ + (I −AA+)DC+(A+BCC+)+A+B(I − CC+),

and the arbitrary matrix Y ∈ R(m−k)×(n−t) satisfies

r(EG1Y FH1) = r(BC) + min(m− r(A)− r(D), n− r(B)− r(C)).

Proof Suppose the matrix equation (1.1) has a solution X, then it follows from Lemma
2.2 that (3.4) hold. In this case, let Ω be the set of all solutions of equations (1.1). By (3.1),

r(X) = r

[
X11 X12

X21 X22

]
. (3.9)

By Lemma 2.1, we have

r(X) = r

[
X11

X21

]
+ r [X11 X12]− r(X11) + r[EG1(X22 −X21X

+
11X12)FH1 ], (3.10)

where G1 = X21FX11 , H1 = EX11X12.
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r

[
X11

X21

]
= r

[
V T

1 XP1

V T
2 XP1

]
= r

[
V T

1 DQ1Γ−1

V T
2 DQ1Γ−1

]
= r(V T DQ1Γ−1)

= r(DQ1) = r(DQ1Q
T
1 ) = r(DC+C) = r(D),

r [X11 X12] = r
[
Σ−1UT

1 BP1 Σ−1UT
1 BP2

]
= r(Σ−1UT

1 B(P1, P2))

= r(Σ−1UT
1 B) = r(UT

1 B) = r(U1U
T
1 B) = r(AA+B) = r(B),

r(X11) = r(Σ−1UT
1 BP1) = r(UT

1 BP1Γ) = r(U1U
T
1 BP1ΓQT

1 ) = r(AA+BC) = r(BC).

(1) By (3.10),

min
X∈Ω

r(X) = r(B) + r(D)− r(BC) + min
X22

r[EG1(X22 −X21X
+
11X12)FH1 ]

= r(B) + r(D)− r(BC).

Then (3.4) hold. By Lemma 2.2, The general expression of X satisfying (3.5) can be
expressed as

X = DC+ + A+B −A+ADC+ + V2X21X
+
11X12P

T
2 + V2Y P T

2 , (3.11)

where Y ∈ R(m−k)×(n−t) satisfies EG1Y FH1 = 0.
By (3.1),

X11 = Σ−1UT
1 BP1 ∈ Rk×t, X12 = Σ−1UT

1 BP2 ∈ Rk×(n−t), X21 = V T
2 DQ1Γ−1 ∈ R(m−k)×t.

By (2.3), (2.4), A+ = V1Σ−1UT
1 , CC+ = P1P

T
1 . Then

V1X11P
T
1 = A+BCC+, P1X

+
11V

T
1 = (A+BCC+)+, X+

11 = P T
1 (A+BCC+)+V1.

Thus we obtain

V2X21X
+
11X12P

T
2 = V2V

T
2 DQ1Γ−1P T

1 (A+BCC+)+V1Σ−1UT
1 BP2P

T
2

= (I −AA+)DC+(A+BCC+)+A+B(I − CC+). (3.12)

By (3.2), (3.3),
G1G

+
1 = U11U

T
11, EG1 = I − U11U

T
11 = U12U

T
12,

H+
1 H1 = P11P

T
11, FH1 = I − P11P

T
11 = P12P

T
12.

Thus EG1Y FH1 = 0, i,e. U12U
T
12Y P12P

T
12 = 0, we have

Y = U11U
T
11Ỹ P11P

T
11, (3.13)

where Ỹ ∈ R(m−k)×(n−t) is arbitrary.
Taking (3.12), (3.13) into (3.11) yields (3.6).
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(2) By (3.10),

max
X∈Ω

r(X) = r(B) + r(D)− r(BC) + max
X22

r[EG1(X22 −X21X
+
11X12)FH1 ]

= r(B) + r(D)− r(BC) + min(r(EG1), r(FH1)).

Since EG1 and FH1 are idempotent matrices, we have

r(EG1) = trace(EG1) = m− k − r(G1G
+
1 ) = m− k − r(G1)

= m− k − r(X21(I −X+
11X11)) = m− k − r

[
X11

X21

]
+ r(X11)

= m− k − r(D) + r(BC) = m + r(BC)− r(A)− r(D),

r(FH1) = trace(FH1) = n− t− r(H+
1 H1) = n− t− r(H1)

= n− t− r((I −X11X
+
11)X12) = n− t− r [X11 X12] + r(X11)

= n− t− r(B) + r(BC) = n + r(BC)− r(B)− r(C).

Then the maximal rank of the matrix equations (1.1) is

max
X∈Ω

r(X) = min(m + r(BC)− r(A)− r(D), n + r(BC)− r(B)− r(C))

+r(B) + r(D)− r(BC) = min(m + r(B)− r(A), n + r(D)− r(C)).

By Lemma 2.2, The general expression of X satisfying (3.7) can be expressed as

X = X0 + V2Y P T
2 ,

where X0 = DC+ + A+B − A+ADC+ + (I − AA+)DC+(A+BCC+)+A+B(I − CC+), and
the arbitrary matrix Y ∈ R(m−k)×(n−t) satisfies

r(EG1Y FH1) = r(BC) + min(m− r(A)− r(D), n− r(B)− r(C)).

The proof is completed.
The result in (3.5) implies Theorem 3 in (see [2]) as a corollary.
Corollary Assume r(B) ≤ r(D), and matrix equations (1.1) is consistent. Then the

matrix equations (1.1) have solution with rank of r(D) if and only if r(BC) = r(B).
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矩阵方程AX = B, XC = D的定秩解

肖庆丰

(东莞职业技术学院基础课部,广东东莞 523808)

摘要: 本文研究了一类矩阵方程组解的秩的范围. 利用矩阵的奇异值分解以及Frobenius范数的特征,

得到了解的极值秩以及解的通式, 并就这些问题的特殊情况进行了讨论, 得到了一些结果.
关键词: 最优控制; 极值秩; 奇异值分解; Frobenius范数
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