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1. Introduction

Let Kv be the complete graph with v vertices and G be a finite simple graph. A G-design of

Kv, denoted by G-GD(v), is a pair (X,B), where X is the vertex set of Kv and B is a collection

of subgraphs of Kv, called blocks, such that each block is isomorphic to G and any two distinct

vertices in Kv are jointed in exactly one block of B.

Let DKn1,n2,···,nh
be the complete partitegraph with vertex set X =

⋃h

i=1 Xi, where Xi,

1 ≤ i ≤ h, are disjoint sets with |Xi| = ni and where two vertices x and y from different sets Xi

and Xj are jointed by exactly one edge {x, y}. A holey G-design, briefly denoted by G-HD(T ),

is a triple (X, {Xi; 1 ≤ i ≤ h},A) with X =
⋃h

i=1 Xi, where T = n1
1n

1
2 · · ·n

1
h is the type of the

holey G-design, A is a collection of edge-disjoint subgraphs of DKn1,n2,···,nh
, called blocks, such

that each block is isomorphic to G and each edge of DKn1,n2,···,nh
is jointed in exactly one block

of A. Usually, the type is denoted by exponential form, for example, the type 1i2r3k · · · denotes

that 1 occurs i times, 2 occurs r times, etc..

In this paper, the discussed graphs are C
(r)
2k−1, i.e., one circle of length 2k−1 with one chord,

where r, 1 ≤ r ≤ k− 2, is the number of vertices between the ends of the chord. For given graph

C
(r)
m , it is easy to see that the graph C

(r)
m is the same graph as C

(m−2−r)
m . So, if r > bm−2

2 c,

we often use C
(m−2−r)
m to express the graph. Obviously, there is no subgraph of Kv which is

isomorphic to C
(r)
2k−1 when v < 2k − 1. Therefore, we only consider the complete graphs with at

least 2k − 1 vertices. It is easy to see that the following lemmas hold.

Lemma 1.1[1] The necessary conditions to exist a G-GD(v) are v(v − 1) ≡ 0 (mod 2e(G)),

v ≥ v(G), where e(G) and v(G) are the number of the edges and the vertices of G, respectively.
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Lemma 1.2 The necessary conditions to exist a C
(r)
m -GD(v) are v(v − 1) ≡ 0 (mod m + 1) and

v ≥ m.

For r = bk−2
2 c, the existence of C

(r)
2k−1-GD(v), which called theta graphs, has been discussed

in [2] and [3]. And the existence of C
(r)
m -GD(v) for 4 ≤ m ≤ 8 has been discussed in [4–7], which

can be summarized as follows:

Lemma 1.3[4−7] For 4 ≤ m ≤ 8, the necessary conditions to exist a C
(r)
m -GD(v) are also

sufficient except (v, m, r) = (5, 4, 1) and (9, 8, 3).

2. General Structures and overall arrangement

In this section, we will give some unified methods to construct G-designs. The definition of

BIBD and GDD can be found in [1].

Lemma 2.1 For given graph G and positive integers h, m, if there exist both a G-HD(hm) and

a G-GD(h + w), then there exists a G-GD(hm + w), where w = 0 or 1.

Proof Let (X,B) be a G-HD(hm), where X =
m⋃

i=1

Xi with |Xi| = h. Suppose W be a w-set and

X
⋂

W = ∅. For 1 ≤ i ≤ m, (Xi

⋃
W,Bi) is the known G-GD(h + w). Letting A = B

⋃
(

m⋃
i=1

Bi),

then (X
⋃

W,A) is a G-GD(hm + w). 2

Lemma 2.2 For given graph G and w = 0 or 1, if there exists a B[s, 1; t], a G-HD(hs) and a

G-GD(h + w), then there exists a G-GD(ht + w).

Proof Let X, H and W be t-set, h-set and w-set respectively, Y = X × H and Y
⋂

W = ∅.

Denote the known designs by

B[s, 1; t] = (X,B);

G-HD(hs) = (B × H, {{b} × H : b ∈ B}, AB), ∀B ∈ B;

G-GD(h + w) = (({x} × H)
⋃

W, Cx), ∀x ∈ X.

Define A = {AB : B ∈ B}
⋃
{Cx : x ∈ X}, then (Y

⋃
W,A) is a G-GD(ht + w). 2

Lemma 2.3 For given graph G and w = 0 or 1, if there exists a B[s, 1; t + 1], a G-HD(hs) and

a G-GD((s − 1)h + w), then there exists a G-GD(ht + w).

Proof Let X, H and W be (t+1)-set, h-set and w-set respectively, Y = X×H and Y
⋂

W = ∅.

Denote the known designs by

B[s, 1; t + 1] = (X
⋃

{∞},B0

⋃
B1);

G-HD(hs) = (B × H, {{b}× H : b ∈ B}, AB), ∀B ∈ B1;

G-GD((s − 1)h + w) = ((B \ {∞}× H)
⋃

W, CB), ∀B ∈ B0,

where B0 is the blocks containing ∞ and B1 is the other blocks. Note that |W | = 0 or 1. Define

D = {AB : B ∈ B1}
⋃
{CB : B ∈ B0},

then ((X × H)
⋃

W,D) is a G-GD(ht + w). 2



58 Journal of Mathematical Research and Exposition Vol.26

Lemma 2.4 For given graph G, positive integer i and w = 0 or 1, if there exists a Bi[s, 1; t− i],

a G-HD(hs), a G-HD(hs+1), a G-GD(h + w) and a G-GD(ih + w), then there exists a G-

GD(ht + w).

Proof Let (X,B) be a Bi[s, 1; t− i] with i parallel classes P1,P2, · · · ,Pi. Suppose a1, · · · , ai be

distinct points that not belong to X . Adding the point aj to each block B in Pj , 1 ≤ j ≤ i,

we get a {s, s + 1}-PBD(t) = (X
⋃
{a1, · · · , ai},D). Assign a weight h to each point x ∈ X and

denote the obtained h-set by Yx. Similarly, assign a weight h to each point in {a1, · · · , ai} and

denote the obtained (hi)-subset by Y
′

. Define Y = Y
′ ⋃

(
⋃

x∈X

Yx), which contains ht elements.

For any block B ∈ D with the weight type hs+1 (or hs), there exists an ingredient G-

HD(hs+1) (or G-HD(hs)) with block set AB . Suppose W be a w-set and W
⋂

Y = ∅. For every

point x ∈ X , there exists an ingredient G-GD(h + w) = (Yx

⋃
W,Ax). Similarly, for the set

{a1, · · · , ai}, there exists an ingredient G-GD(ih + w) = (Y
′ ⋃

W,A
′

). Let

A = A
′ ⋃

{AB : B ∈ D}
⋃
{Ax : x ∈ X}.

Then (Y
⋃

W,A) is a G-GD(ht + w). 2

Now, we will give some results of the holey designs.

Lemma 2.5[7] For integers k, t and r, t ≥ 1, k ≥ 3 and 1 ≤ r ≤ k − 2, there exists a C
(r)
2k−1-

HD((2k)2t+1) and a C
(r)
2k−1-HD((4k)2t+1).

Lemma 2.6 There exists a C
(r)
2k−1-HD((4k)u) for integer u ≡ 0, 1 (mod 3) and u ≥ 3, where

k ≥ 3 and 1 ≤ r ≤ k − 2.

Proof By [1], there exists a {3}-GDD(2u) for u ≡ 0, 1 (mod 3), u ≥ 3. Suppose (X,G,B) be

a {3}-GDD(2u), where X =
⋃u

i=1 Xi and G = {Xi : 1 ≤ i ≤ u}, |Xi| = 2. Assign a weight

2k to each point x ∈ Xi, 1 ≤ i ≤ u and denote the obtained 4k-set by Yi. Let Y =
⋃u

i=1 Yi,

which contains 4ku elements. For each weighted block B ∈ B, there exists an ingredient C
(r)
2k−1-

HD((2k)3) with block set AB by Lemma 2.5. Define

A = {AB : B ∈ B} and G′ = {Yi : 1 ≤ i ≤ u}.

Then (Y,G′,A) is a C
(r)
2k−1-HD((4k)u). 2

Lemma 2.7[1] (1) There exists a B[3, 1; v] if and only if v ≡ 1, 3 (mod 6) and v ≥ 3.

(2) For v ≡ 3 (mod 6), there exist Bi[3, 1; v] with i parallel classes, where 1 ≤ i ≤ v−1
2 .

Lemma 2.8 For given graph G and w = 0 or 1, if there exists a G-HD(h3), a G-HD(h4), a

G-GD(ih + w) with i = 1, 2, 5, then there exists a G-GD(ht + w) for any t ≥ 1.

Proof We consider the existence of G-GD(ht + w) from the following cases.

(1) For t ≡ 1, 3 (mod 6), there exists a B[3, 1; t] by Lemma 2.7. Thus, there exists a

G-GD(ht + w) by the known G-HD(h3), G-GD(h + w) and Lemma 2.2.

(2) For t ≡ 0, 2 (mod 6), there exists a B[3, 1; t + 1] by Lemma 2.7. Thus, there exits a

G-GD(ht + w) by the known G-HD(h3), G-GD(2h + w) and Lemma 2.3.

(3) For t ≡ 3 + i (mod 6), i = 1, 2, there exists a Bi[3, 1; t − i] by Lemma 2.7. So, letting

t − i = 6u + 3, the RB[3, 1; t − i] is just a B3u+1[3, 1; t − i]. By Lemma 2.4, there exits a G-

GD(ht + w) if 3u + 1 ≥ 1 (for i = 1) or 3u + 1 ≥ 2 (for i = 2) except for the case (i, u) = (2, 0),

i.e., t = 3 + 2 = 5. But, G-GD(5h + w) is known. 2
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Theorem 2.9 For w = 0 and 1, k ≥ 5, if there exists a C
(r)
2k−1-GD(4k + w) and a C

(r)
2k−1-

GD(8k + w), then there exists a C
(r)
2k−1-GD(v) for v ≡ 0, 1 (mod 4k).

Proof By Lemmas 2.5 and 2.6, there exist C
(r)
2k−1-HD((4k)u) for u = 3, 4, 5 and 1 ≤ r ≤ k − 2.

So, there exist C
(r)
2k−1-GD(5 · 4k + w) for w = 0 or 1 by Lemma 2.1. Then, there exists a

C
(r)
2k−1-GD(v) by Lemma 2.8. 2

3. The construction of C
(r)
2k−1-GD(v)

In this section, we will give a unified method to construct C
(r)
2k−1-GD(v) for k ≥ 5. In the

construction of C
(r)
2k−1-GD(v) on the set X , we will give the base blocks D. Denote the blocks in

dev(D) as (a0, a1, · · · , a2k−2). Then, the chord is denoted by (r, d) = {ai, ai+r+1}, where ai and

ai+r+1 are the ends of the chord and the difference d = |ai+r+1 − ai|. For integer i ≤ j, A[i, j]

denotes (i,−(i + 1), · · · , (−1)j−ij) and A[i, j]−1 denotes (j,−(j − 1), · · · , (−1)j−ii).

Lemma 3.1 There exists a C
(r)
2k−1-GD(4k + 1) for 1 ≤ r ≤ k − 2.

Construction Let X = Z4k+1. Considering the number of the block set, we only need to

construct one base block.

Case 1 (k even) Let D = (A([1, 2k] \ {d, k}), k). Choose the chord in the blocks as

(r, d) =





(4i + 1, 2i + 2) = {a0, a4i+2}, 0 ≤ i ≤ k−4
2

(4i + 2, 2i + 2) = {a0, a4i+3}, 0 ≤ i ≤ bk−6
4 c

(4i + 3, 2i + 2) = {a2i+2, a6i+6}, 0 ≤ i ≤ bk−4
4 c

Case 2 (k odd)

Let D =

{
(A([1, 2k] \ {2i + 1, k − 1}), k − 1), 0 ≤ i ≤ k−3

2

(A([2, 2k − 2] \ {2i + 2, k}), 2k − 1, 1,−k, 2k), 0 ≤ i ≤ k−5
2

Choose the chord in the blocks as (r, d) =

{
(4i + 1, 2i + 1) = {a0, a4i+2}, 0 ≤ i ≤ k−3

2

(4i + 3, 2i + 2) = {a0, a4i+4}, 0 ≤ i ≤ k−5
2

.

Proof Obviously, each difference in Z4k+1 appears exactly once in D or as the chord difference.

In order to show that the range of r is filled full indeed, we present the following table.

D r range of r

4i + 1 (0 ≤ i ≤ k−4
2

) [1, k − 3]4 ∪ [4, k − 4]4 (k ≡ 0 (mod 4))
[1, k − 5]4 ∪ [4, k − 2]4 (k ≡ 2 (mod 4))

4i + 2 (0 ≤ i ≤ b k−6
4

c) [2, k − 6]4 (k ≡ 0 (mod 4))
Case 1 [2, k − 4]4 (k ≡ 2 (mod 4))

4i + 3 (0 ≤ i ≤ b k−4
4

c) [3, k − 5]4 ∪ {k − 2} (k ≡ 0 (mod 4))
[3, k − 3]4 (k ≡ 2 (mod 4))

4i + 1 (0 ≤ i ≤ k−3
2

) [1, k − 4]4 ∪ [2, k − 3]4 (k ≡ 1 (mod 4))
[1, k − 2]4 ∪ [2, k − 5]4 (k ≡ 3 (mod 4))

Case 2 4i + 3 (0 ≤ i ≤ k−5
2

) [3, k − 2]4 ∪ [4, k − 5]4 (k ≡ 1 (mod 4))
[3, k − 4]4 ∪ [4, k − 3]4 (k ≡ 3 (mod 4))

Table 1



60 Journal of Mathematical Research and Exposition Vol.26

Below, what we need to do is to verify that all vertices in D̃0 are distinct, which implies that D

is a CDC.

In Case 1, the vertex set of D̃0 is [−k, k] \ {−(i + 1), k
2}.

In Case 2, the vertex set of D̃0 is
{

[−k, k] \ {−( k−1
2 ), i + 1} (for 0 ≤ i ≤ k−3

2 )
[−(k − 3), 0] ∪ ([2, k + 1] \ {i + 2, k+3

2 }) ∪ {−k,−(k + 1),−2k} (for 0 ≤ i ≤ k−5
2 ).

Lemma 3.2 There exists a C
(r)
2k−1-GD(8k + 1) for 1 ≤ r ≤ k − 2.

Construction Let X = Z8k+1. Considering the number of the block set, we only need to

construct two base blocks.

Case 1 (k odd)

Subcase 1.1 (r ≡ 1, 2 (mod 4))

(1) Let D1
1 = (k−3, A([3, k−4]\{d}), A([k−2, 2k−1]\{k, k+1}), 3k,−2k,−(3k+1),−1, 2)

and choose the chord as (r, d) = (4i + 2, k − 4 − 2i) = {a0, a4i+3}, 0 ≤ i ≤ k−7
2 ;

D2
1 = (k − 3, A([4, 2k − 1] \ {k − 3, k, k + 1}), 3k,−2k,−(3k + 1),−2, 3)

with the chords (r, d) = (4i + 2, 1) = {a0, a4i+3}, i = k−5
2 , k−3

2 .

(2) Let D2 = (3k − 1, A([2k + 1, 3k − 2] \ {d}), A[3k + 2, 4k],−k,−(k + 1)) with the chords

(r, d) = (4i + 2, 2k + 2i + 1) = {a0, a4i+3}, 0 ≤ i ≤ k−3
2 .

Subcase 1.2 (r ≡ 0, 3 (mod 4))

(1) Let D1 = (k + 2,−1, 3,−A[5, k − 1],−A([k + 3, 2k − 2] \ {d}),

−(2k + 3),−(k + 1),−(2k + 1), 2k + 4,−k, 2k + 2)

with the chords (r, d) =

{
(r, d) = (4i + 4, k + 5 + 2i) = {a0, a4i+5}, 0 ≤ i ≤ k−7

2

(r, d) = (4i + 4, k + 5) = {a0, a4i+5}, i = k−5
2

.

(2) Let D2 = (3k,−2, 4, A([2k + 5, 4k] \ {3k − 1, d})−1,−2k,−(2k − 1))

with the chords (r, d) = (4i + 4, 3k + 3 + 2i) = {a0, a4i+5}, 0 ≤ i ≤ k−5
2 .

Case 2 (k even)

Subcase 2.1 (r ≡ 2, 3 (mod 4))

(1) Let D1 = (k +1, 2k +2,−(2k+1), A([k +2, 2k−2]\{d})−1, A[2, k−2]−1,−k,−(k−1))

with the chords (r, d) = (4i + 2, k + 2 + 2i) = {a0, a4i+3}, 0 ≤ i ≤ k
2 − 2.

(2) Let D2 = (3k + 1, A([2k + 3, 4k] \ {3k + 1, d})−1,−2k,−(2k − 1)) with the chords

(r, d) = (4i + 2, 3k + 1 + 2i) = {a0, a4i+3}, 0 ≤ i ≤ k
2 − 2.

Subcase 2.2 (r ≡ 0, 1 (mod 4))

(1) Let D1
1 = (k−2,−4k, 4k−2, A([3, 2k−3]\{d, k−2, k+1, k+2}),−2k,−1, 2, 2−2k, 2k−1)

with the chords (r, d) = (4i + 4, k − 5 − 2i) = {a0, a4i+5}, 0 ≤ i ≤ k
2 − 4;

D2
1 = (k − 2,−4k, 4k − 2, A([4, 2k − 3] \ {k − 2, k + 1, k + 2}) − 2k,−2, 3,−(2k − 2), 2k − 1)

with the chords (r, d) = (4i + 4, 1) = {a0, a4i+5} i = k
2 − 3, k

2 − 2.

(2) Let D2 = (A([2k + 1, 4k − 4] \ {d, 3k + 2}),−(k + 1),−(k + 2)) with the chords (r, d) =

(4i + 4, 3k − 2i − 1) = {a0, a4i+5}, 0 ≤ i ≤ k
2 − 2.
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Proof In the Case 1, the construction requests k ≥ 7. The construction for k = 5, i.e., C
(r)
9 -

GD(41), r = 1, 2, 3, will be given in the following examples. Obviously, each difference in Z8k+1

appears exactly once in D1 ∪D2 or as one of the chord differences. The following table will show

that all vertices in each number-tuple are distinct.

D {D̃}

D1
1 [−2, k − 3] ∪ ([k, 3k−7

2
] \ { 3k−7

2
− i}) ∪ [ 3k+3

2
, 2k] ∪ { 3k−3

2
, 3k,−(3k + 1)}

case 1.1 D2
1 [−1, k − 3] ∪ [k + 1, 3k−7

2
] ∪ [ 3k+3

2
, 2k] ∪ { 3k−3

2
, 3k,−(3k + 1),−3}

D2 ([−(3k + 1),− 5k+5
2

] \ {−(3k − i + 1)}) ∪ [2k + 1, 3k − 1] ∪ [− 5k−3
2

,−2k] ∪ {0, k + 1}

D1 ([0, k−3
2

] \ { k−5−2i

2
}) ∪ ([ k+5

2
, 2k − 1] \ {k}) ∪ {−(3k + 6),−(2k + 2),−(k + 5),−(k + 2),−4}

case 1.2 D2 [3k, 4k − 1] ∪ ([− 3k−3
2

, 1 − k] \ {− 3k−2i−5
2

}) ∪ [3 − 2k,− 3k+1
2

] ∪ {0, 2k − 1, 3k − 2}

D1 [k + 1, 5k−4
2

] ∪ ([ 5k+4
2

, 3k] \ { 5k+2i+4
2

}) ∪ {0, k − 1, 3k + 3}

case 2.1 D2 [3k + 1, 4k − 1] ∪ [1 − 2k,− 3k+2
2

] ∪ ([− 3k−2
2

,−k] \ {− 3k−2i−2
2

}) ∪ {2k − 1, 0}

D1
1 [−3, k − 4] ∪ [1 − 2k,−3k − 2] ∪ ([k − 2, 2k − 2] \ { 3k−2i−10

2
, 3k−6

2
, 3k−2

2
})

case 2.2 D2
1 [−2, k − 4] ∪ ([k, 2k − 2] \ { 3k−6

2
, 3k−2

2
}) ∪ {1 − 2k,−4,−3k − 2, k − 2}

D2 [2k + 3, 3k] ∪ ([−3k,−2k − 2] \ {− 5k+2i+2
2

,− 5k−2
2

, 3 − k, k + 2})

Table 2

In order to show that the range of r is filled full indeed, we present the following table.

D r range of r

D1
1 4i + 2 (0 ≤ i ≤ k−7

2
) [2, 2k − 4]4 =

case 1.1 D2
1 4i + 2 (i = k−5

2
, k−3

2
) [1, k − 4]4 ∪ [2, k − 3]4 (k ≡ 1 (mod 4))

D2 4i + 2 (0 ≤ i ≤ k−3
2

) [1, k − 2]4 ∪ [2, k − 5]4 (k ≡ 3 (mod 4))

D1 4i + 4 (0 ≤ i ≤ k−5
2

) [4, 2k − 6]4 =

case 1.2 [3, k − 2]4 ∪ [4, k − 5]4 (k ≡ 1 (mod 4))

D2 4i + 3 (0 ≤ i ≤ t − 1) [3, k − 4]4 ∪ [4, k − 3]4 (k ≡ 3 (mod 4))

D1 4i + 2 (0 ≤ i ≤ k−4
2

) [2, 2k − 6]4 =

case 2.1 [2, k − 2]4 ∪ [3, k − 5]4 (k ≡ 0 (mod 4))

D2 4i + 3 (0 ≤ i ≤ t − 1) [2, k − 4]4 ∪ [3, k − 3]4 (k ≡ 2 (mod 4))

D1
1 4i + 4 (0 ≤ i ≤ k−8

2
) [2, 2k − 4]4 =

case 2.2 D2
1 4i + 4 (i = k−6

2
, k−4

2
) [1, k − 3]4 ∪ [4, k − 4]4 (k ≡ 0 (mod 4))

D2 4i + 4 (0 ≤ i ≤ k−4
2

) [1, k − 5]4 ∪ [4, k − 2]4 (k ≡ 2 (mod 4))

Table 3

Example C
(r)
9 -GD(41) with r = 1, 2, 3.

Construction Let X = Z41. We should construct two base blocks D1 and D2.

D1
1 = (17,−18, 2, 3,−7, 8,−10,−4, 9);

D2
1 = (−17, 18, 1, 2, 3, 7, 8, 9, 10);

D2 = (14, A([11, 13] \ {d}), 15,−16, 19,−20,−5,−6).

Choose the chords (r, d) = (1, 1) = {a0, a2} in the blocks of dev(D1
1) and (r, d) = (1, 11) =

{a0, a7} in the blocks of dev(D2).

Choose the chords (r, d) = (2, 1) = {a0, a3} in the blocks of dev(D1
1) and (r, d) = (2, 13) =

{a0, a3} in the blocks of dev(D2).
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Choose the chords (r, d) = (3, 4) = {a0, a4} in the blocks of dev(D2
1) and (r, d) = (3, 13) =

{a0, a4} in the blocks of dev(D2).

Theorem 3.3 For v ≡ 1 (mod 4k) and 1 ≤ r ≤ k − 2, the necessary conditions to exist a

C
(r)
2k−1-GD(v) are also sufficient.

Proof By Lemmas 3.1 and 3.2, there exists a C
(r)
2k−1-GD(4k + 1), a C

(r)
2k−1-GD(8k + 1), respec-

tively. Then, we obtain the conclusion by Theorem 2.9. 2
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