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Abstract: In this paper, we give a unified method to construct G-designs and solve the

existence of Cé;)fl-GD(v) for v = 1 (mod 4k), where the graph Cé;)fp 1 <r < k-2, denotes

a circle of length 2k — 1 with one chord and r is the number of vertices between the ends of
the chord.
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1. Introduction

Let K, be the complete graph with v vertices and G be a finite simple graph. A G-design of
K, denoted by G-GD(v), is a pair (X, B), where X is the vertex set of K, and B is a collection
of subgraphs of K, called blocks, such that each block is isomorphic to G and any two distinct
vertices in K, are jointed in exactly one block of B.

Let DKy, ny,...n, be the complete partitegraph with vertex set X = Ule X, where X;,
1 <@ < h, are disjoint sets with | X;| = n; and where two vertices x and y from different sets X;
and X are jointed by exactly one edge {z,y}. A holey G-design, briefly denoted by G-HD(T),
is a triple (X,{X;;1 < < h}, A) with X = Ule X;, where T = nin}---n} is the type of the
holey G-design, A is a collection of edge-disjoint subgraphs of DK, n,.... n,, called blocks, such
that each block is isomorphic to G and each edge of DKy, n,....n, is jointed in exactly one block
of A. Usually, the type is denoted by exponential form, for example, the type 1?273% ... denotes
that 1 occurs ¢ times, 2 occurs r times, etc..

In this paper, the discussed graphs are 02(7,;)71, i.e., one circle of length 2k — 1 with one chord,
where r, 1 < r < k— 2, is the number of vertices between the ends of the chord. For given graph
nyf), it is easy to see that the graph C,(,:) is the same graph as C’fnm727r). So, if r > LWT_QL
we often use C’fnmdfr) to express the graph. Obviously, there is no subgraph of K, which is
isomorphic to Cé;ll when v < 2k — 1. Therefore, we only consider the complete graphs with at
least 2k — 1 vertices. It is easy to see that the following lemmas hold.

Lemma 1.1 The necessary conditions to exist a G-GD(v) are v(v — 1) = 0 (mod 2¢(Q)),
v > v(G), where e¢(G) and v(G) are the number of the edges and the vertices of G, respectively.
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Lemma 1.2 The necessary conditions to exist a C’r(rf)—GD(v) arev(v—1) =0 (mod m+1) and
v >m.
For r = | %52], the existence of C’é?_l—GD(v), which called theta graphs, has been discussed

in [2] and [3]. And the existence of Cg)-GD(v) for 4 < m < 8 has been discussed in [4-7], which
can be summarized as follows:

Lemma 1.347 Ford4 < m < 8, the necessary conditions to exist a nyf)—GD(v) are also
pr— 5 1

sufficient except (v, m,r) = (5,4,1) and (9,8, 3).

2. General Structures and overall arrangement

In this section, we will give some unified methods to construct G-designs. The definition of
BIBD and GDD can be found in [1].

Lemma 2.1 For given graph G and positive integers h, m, if there exist both a G-HD(h™) and
a G-GD(h + w), then there exists a G-GD(hm + w), where w = 0 or 1.

Proof Let (X,B) be a G-HD(h™), where X = |J X; with | X;| = h. Suppose W be a w-set and
=1

K2
m

XAOAW =0. For 1 <i<m, (X; W, B;) is the known G-GD(h + w). Letting A =B(U B:),
=1

then (X W, A) is a G-GD(hm + w). O

Lemma 2.2 For given graph G and w = 0 or 1, if there exists a Bls, 1;t], a G-HD(h®) and a
G-GD(h + w), then there exists a G-GD(ht + w).

Proof Let X,H and W be t-set, h-set and w-set respectively, Y = X x H and YW = (.
Denote the known designs by

Bls, 1;t] = (X, B);
G-HD(h*) = (B x H,{{b} x H: be B}, Ag), VB € B;
G-GD(h+w) = (({z} x H)|JW, C.), Vze X.

Define A= {Ap: Be B} J{C,: z € X}, then (YUW, A) is a G-GD(ht + w). m

Lemma 2.3 For given graph G and w = 0 or 1, if there exists a Bls, 1;t+ 1], a G-HD(h®) and
a G-GD((s — 1)h + w), then there exists a G-GD(ht + w).

Proof Let X, H and W be (t+1)-set, h-set and w-set respectively, Y = X x H and Y W = ().
Denote the known designs by

Bls, 1t +1] = (X | J{oo}, Bo|J B1);
G-HD(h®) = (B x H,{{b} x H: b€ B}, Ag), VB € By;
G-GD((s — 1)h+w) = ((B\ {oc} x H)| JW,Cp), VB € By,
where By is the blocks containing co and By is the other blocks. Note that [W| =0 or 1. Define

D:{AB: BEBl}U{CB: BEB()},
then ((X x H)UW,D) is a G-GD(ht + w). O
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Lemma 2.4 For given graph G, positive integer i and w = 0 or 1, if there exists a B;[s, 1;t —1i],
a G-HD(h®), a G-HD(h**!), a G-GD(h + w) and a G-GD(ih + w), then there exists a G-
GD(ht + w).

Proof Let (X,B) be a B;[s, 1;t — 4| with ¢ parallel classes Py, Pa, - -, P;. Suppose aq,---,a; be
distinct points that not belong to X. Adding the point a; to each block B in P;, 1 < j <4,
we get a {s,s+ 1}-PBD(t) = (X U{a1,---,a;}, D). Assign a weight h to each point z € X and
denote the obtained h-set by Y,. Similarly, assign a weight h to each point in {aj,---,a;} and

denote the obtained (hi)-subset by Y. Define Y =Y | J( | Ya), which contains ht elements.
reX

For any block B € D with the weight type h*T! (or h®), there exists an ingredient G-
HD(h*Y) (or G-HD(h*)) with block set Ap. Suppose W be a w-set and W (Y = (). For every
point € X, there exists an ingredient G-GD(h + w) = (Yy UW, A;). Similarly, for the set
{a1,---,a;}, there exists an ingredient G-GD(ih + w) = (Y JW, A"). Let

A=A U{Ap: BeD}U{A,: zeX}.
Then (Y W, A) is a G-GD(ht + w). O

Now, we will give some results of the holey designs.

Lemma 2.5!1 For integers k, t andr,t > 1,k >3 and 1 <r < k — 2, there exists a 052)71—
HD((2k)2+1) and a CL;) | -H D((4k)?+1).

Lemma 2.6 There exists a Cé?_l—HD((élk)“) for integer u = 0,1 (mod 3) and u > 3, where
k>3and1 <r<k-2.

Proof By [1], there exists a {3}-GDD(2%) for u = 0,1 (mod 3), u > 3. Suppose (X,G,B) be
a {3}-GDD(2"), where X = (Ji"; X; and G = {X; : 1 <14 < u}, |X;| = 2. Assign a weight
2k to each point z € X;, 1 < i < u and denote the obtained 4k-set by Y;. Let Y = U?Zl Y,
which contains 4ku elements. For each weighted block B € B, there exists an ingredient Cégll—
HD((2k)?) with block set Ap by Lemma 2.5. Define

A={Ap: BeB}and ¢ ={Y;: 1<i<u}.
Then (Y, G, A) is a C\) -HD((4k)"). O

Lemma 2.701 (1) There exists a B[3,1;v] if and only if v = 1,3 (mod 6) and v > 3.

(2) For v =3 (mod 6), there exist B;[3,1;v] with i parallel classes, where 1 < i < =1,

Lemma 2.8 For given graph G and w = 0 or 1, if there exists a G-HD(h®), a G-HD(h%), a
G-GD(ih + w) with i = 1,2, 5, then there exists a G-GD(ht + w) for any t > 1.

Proof We consider the existence of G-GD(ht + w) from the following cases.

(1) For t = 1,3 (mod 6), there exists a B[3,1;¢] by Lemma 2.7. Thus, there exists a
G-GD(ht +w) by the known G-HD(h?), G-GD(h + w) and Lemma 2.2.

(2) For t = 0,2 (mod 6), there exists a B[3,1;¢ + 1] by Lemma 2.7. Thus, there exits a
G-GD(ht +w) by the known G-HD(h?), G-GD(2h + w) and Lemma 2.3.

(3) For t =3+ (mod 6), i = 1,2, there exists a B;[3,1;t — i] by Lemma 2.7. So, letting
t —i = 6u+ 3, the RB[3,1;t — ] is just a Bsy4+1[3,1;t — 7]. By Lemma 2.4, there exits a G-
GD(ht + w) if 3u+1>1 (for i =1) or 3u+ 1 > 2 (for ¢ = 2) except for the case (i,u) = (2,0),
ie,t=3+2=5. But, G-GD(5h + w) is known. O
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Theorem 2.9 For w = 0 and 1, k > 5, if there exists a C’é?_l—GD(Zlk +w) and a C’éz)_l—
GD(8k + w), then there exists a Cé;ll—GD(v) for v=10,1 (mod 4k).

Proof By Lemmas 2.5 and 2.6, there exist C\r) ,-HD((4k)") for u=3,4,5 and 1 < r < k — 2.
So, there exist Cé;ll—GD(5 -4k + w) for w = 0 or 1 by Lemma 2.1. Then, there exists a
02(;)_1—GD(’U) by Lemma 2.8. 0

3. The construction of C{) -GD(v)

In this section, we will give a unified method to construct C’é;)_l—GD(v) for k > 5. In the

construction of Cé;ll-GD(v) on the set X, we will give the base blocks D. Denote the blocks in
dev(D) as (ag, a1, -, agk—2). Then, the chord is denoted by (r,d) = {a;, aj+r+1}, where a; and
@i+r4+1 are the ends of the chord and the difference d = |a;y,41 — a;|. For integer ¢ < j, Ali, j]
denotes (i, —(i +1),---,(=1)77%) and A[i, j]~* denotes (j,—(j — 1),---, (=1)77%).

Lemma 3.1 There exists a CQ(ZLI—GD(Zlk +1) for1 <r<k-2.

Construction Let X = Zy;y1. Considering the number of the block set, we only need to
construct one base block.

Case 1 (k even) Let D = (A([1,2k]\ {d,k}),k). Choose the chord in the blocks as

(4i +1,2i +2) = {ao, aai+2}, 0<:< kg;‘l
(’I’, d) = (4Z + 2,21+ 2) = {ao,a4i+3}, 0<: < L%J
(4i 43,2 + 2) = {azit2, agite}, 0<i< |52
Case 2 (k odd)
Let D = J (A(L2K\{2i+ 1k —1}),k - 1), 0<i< ks
T (A(2,2k — 2]\ {20+ 2,k}),2k — 1,1, —k,2k), 0<i< kS

w

2
(4i+1,2i + 1) = {ag, asiya}, 0 <i < k5
(4i + 3,21+ 2) = {ao, aqita}, 0 < < 5=

ot

Choose the chord in the blocks as (r,d) = {

Proof Obviously, each difference in Zy,41 appears exactly once in D or as the chord difference.
In order to show that the range of r is filled full indeed, we present the following table.

D r range of r

4i+1(0<i<E %) [ [1,k—3aU[4,k—4]s (k=0 (mod 4))
[1,k—5l4U[4,k—2]s (k=2 (mod 4))

Ti+2(0<i<|=%)) 2,k —6]1s (k=0 (mod 4))

Case 1 2,k —4]sa (k=2 (mod 4))

H+3(0<i<|=2]) | B.k—5aU{k—2} (k=0 (mod4))

3,k — 3]s (k=2 (mod 4))

4i+1(0<i<E3) [[1,k—44U[2,k—3]s (k=1 (mod 4))
[1,k—24U[2,k—5]s (k=3 (mod 4))

Case2 | 4i+3(0<i<E2) | [Bk—2lsU[4k—5]s (k=1 (mod 4))
3,k —4]s U4,k —3]s (k=3 (mod 4))

Table 1
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Below, what we need to do is to verify that all vertices in 50 are distinct, which implies that D
isa CDC.

In Case 1, the vertex set of l:)o is [—k, K]\ {—(i+1),5}.

In Case 2, the vertex set of Dy is

{[—mn{—(%,m} (o015 55"

)
[—(k—3),00U([2,k+ 1\ {i +2, 531 U {—k, —(k+ 1), —2k} (for 0 <i < £2).

{=Fk
Lemma 3.2 There exists a CQk 1-GD@k+1) for1 <r <k-—2.

Construction Let X = Zgiy1. Considering the number of the block set, we only need to
construct two base blocks.

Case 1 (k odd)

Subcase 1.1 (r = 1,2 (mod 4))
(1) Let DI = (k—3, A([3, k—4]\{d}), A([k—2,2k—1]\{k, k+1}),3k, —2k, —(3k+1),—1,2)
and choose the chord as (r,d) = (4i + 2,k — 4 — 2i) = {ap, asitr3}, 0<i < %;

= (k—3,A([4,2k — 1)\ {k — 3,k k + 1}), 3k, =2k, —(3k + 1), —2, 3)

with the chords (r,d) = (4i +2,1) = {ao, asit3}, i = 52, 553,

(2) Let Do = (3k — 1, A([2k + 1,3k — 2]\ {d}), A[3k + 2, 4K], —k, —(k + 1)) with the chords
(Tv d) = (4Z + 2a2k+ 27’+ 1) = {a05a4’i+3}a 0 S 1 S k23-

Subcase 1.2 (r =0, 3 (mod 4))
(1) Let Dy = (k+2,—1,3,—A[5,k— 1], —A([k + 3,2k — 2] \ {d}),
—(2k+3),—(k+1),—(2k+1),2k+ 4, -k, 2k + 2)

. o (rd) = (4i + 4,k + 54 26) = {ao, asips}, 0 <i < BT
with the chords (r,d) = { (rd) = (4i + 4 k+5) = {a, a4l+5} P 2
(2) Let Dy = (3k,—2,4, A([2k + 5,4Kk] \ {3k —1,d})~1, —2k, —(2k — 1))

with the chords (r,d) = (4i + 4,3k + 3 + 2i) = {aog, @4i15}, 0 <i< B3

Case 2 (k even)

Subcase 2.1 (r = 2,3 (mod 4))

(1) Let Dy = (k+1,2k+2, —(2k+1), A([k+2,2k— 2]\ {d}) "1, A[2, k= 2], =k, —(k — 1))
with the chords (r,d) = (4i + 2,k + 2+ 2i) = {ag, asi3}, 0<i < & —2.

(2) Let Dy = (3k + 1, A([2k + 3,4k] \ {3k + 1,d})~', -2k, —(2k — 1)) with the chords
(r,d) = (4i + 2,3k + 1 4 2i) = {ao, asi13}, 0 <i < E—2.

Subcase 2.2 (r =0, 1 (mod 4))
(1) Let D} = (k—2, —4k,4k—2, A([3,2k—3]\{d, k-2, k+1, k+2}), —2k, —1,2,2—2k, 2k—1)
with the chords (r,d) = (4i + 4,k — 5 — 2i) = {ao, asi45}, 0<i < & —4;

D? = (k — 2, —4k, 4k — 2, A([4, 2k — 3]\ {k — 2,k + 1,k + 2}) — 2k, —2,3, —(2k — 2), 2k — 1)

with the chords (r,d) = (4i +4,1) = {ao, asiy5} i = £ — 3,
(2) Let Dy = (A([2k + 1,4k — 4]\ {d, 3k +2}), (k: +1), —(k +2)) with the chords (r,d) =
(4Z+4,3k—21—1) :{ao,a4i+5}, OS’LS b) — 2.

k_o
2
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Proof In the Case 1, the construction requests k£ > 7. The construction for k = 5, i.e., CéT)—
GD(41), r =1,2,3, will be given in the following examples. Obviously, each difference in Zgj41
appears exactly once in D1 U Dy or as one of the chord differences. The following table will show
that all vertices in each number-tuple are distinct.

D {D}

D} [=2,k — 3] U ([k, ZE=T]\ {35 — i}y U [3EE3 ok U {3528 3k, —(3k + 1)}
case 1.1 | D2 -1,k — 3]U[k+1 kT U [BEE3 ok) U {3522 3k, —(3k + 1), —3}

Do ([ (3k + 1), = 2EE2]\ {— (3k—z+1)})u[2k+1,3k—1}u[—$,—2k]u{o,k+1}

Dy | ([0, 553\ {52 2Z})U([’C*" 2k — 1\ {k}) U{-(3k +6),—(2k +2), —=(k +5), —=(k +2), -4}
case 1.2 | Da Bk, 4k — 1] U (3521 — k] \ {—2=2=8 ) U [3 — 2k, — 3L U {0, 2k — 1,3k — 2}

Dy [k+1, = SEoAyy (Bt 3k \ {222y U {0,k — 1,3k + 3}
case 2.1 | Dy [3k+1,4k—1]u[1—2k,—%} (352, —k)\ {—2E=2=2}) U {2k — 1,0}

D} [—3,k—4]u[1—21~c,—3k:—2]u([k—2,2k:—2]\{w, ko6 ko2
case 2.2 | D? [—2,k — 4] U ([k, 2k — 2]\ {2575, K22y U {1 — 2k, -4, -3k — 2,k — 2}

Dy [2k + 3,3k] U ([—3k, —2k — 2] \ {—3&t2042 " 5k=2 '3k k4 2})

Table 2

In order to show that the range of r is filled full indeed, we present the following table.

D r range of r

DI | 4i+2(0<i<ET) [2,2k —4]4 =

case 1.1 | D? 4z+2(z—%5,%3) [1,k—4]4U[2,k — 3]s (k=1 (mod 4))
Dy | 4i+20<i<%3) | [1,k—2]4U[2,k—5s (k=3 (mod 4))
Dy | 4i+4(0<i<E2) [4,2k — 6]4 =

case 1.2 B,k —2]4U[4,k—5]s (k=1 (mod4))
Dy | 44+30<i<t—1) | 38,k—44U[4,k—3]s (k=3 (mod 4))
Dy | 4i+2(0<i< T [2,2k — 6]4 =

case 2.1 2,k —2]4U[3,k —5]s (k=0 (mod 4))
Dy | 44+30<i<t—1) | [2,k—44U[3,k—3]s (k=2 (mod 4))
DI | 4i+4(0<i<ES) [2,2k —4]4 =

case 2.2 | D} | 4i+4 (i=55 524 |\ [1k—3]4U[4,k—4)s (k=0 (mod 4))
Dy | 4i+40<i<EN | [1,k—5]4U[4,k—24 (k=2 (mod 4))

Table 3
Example C{"”-GD(41) with r = 1,2, 3.
Construction Let X = Z4;. We should construct two base blocks Dq and Ds.
=(17,-18,2,3,-7,8,—10,—4,9);
D? = (-17,18,1,2,3,7,8,9,10);
Dy = (14, A([11,13]\ {d}), 15, —16,19, —20, —5, —6).

Choose the chords (r,d) = (1,1) = {ao, az} in the blocks of dev(D1) and (r,d) = (1,11) =
{ag,ar} in the blocks of dev(Ds).
Choose the chords (r,d) = (
{ap, as} in the blocks of dev(D3).

2,1) = {ao, a3} in the blocks of dev(D7) and (r,d) = (2,13) =
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Choose the chords (r,d) = (3,4) = {ao, a4} in the blocks of dev(D?) and (r,d) = (3,13) =
{ag, a4} in the blocks of dev(D3).

Theorem 3.3 For v = 1 (mod 4k) and 1 < r < k — 2, the necessary conditions to exist a
Cé;ll—GD(v) are also sufficient.

Proof By Lemmas 3.1 and 3.2, there exists a Cé;ll—GD(4k +1),a 6’2(7,;)71-GD(8/€ + 1), respec-
tively. Then, we obtain the conclusion by Theorem 2.9. O
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