Decompositions of Complete Graph into (2k-1)-Circles with One Chord

SHAN Xiu-ling, KANG Qing-de

(Dept. of Math., Hebei Normal University, Shijiazhuang 050016, China) (E-mail: xiulingshan@sina.com)

Abstract: In this paper, we give a unified method to construct G-designs and solve the existence of $C_{2k-1}^{(r)}$ -GD(v) for $v \equiv 1 \pmod{4k}$, where the graph $C_{2k-1}^{(r)}$, $1 \le r \le k-2$, denotes a circle of length 2k-1 with one chord and r is the number of vertices between the ends of the chord.

Key words: graph design; holey graph design; difference.

MSC(2000): 05C15 CLC number: 0157.5

1. Introduction

Let K_v be the *complete graph* with v vertices and G be a finite simple graph. A G-design of K_v , denoted by G-GD(v), is a pair (X, \mathcal{B}) , where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are jointed in exactly one block of \mathcal{B} .

Let DK_{n_1,n_2,\dots,n_h} be the complete partitegraph with vertex set $X = \bigcup_{i=1}^h X_i$, where X_i , $1 \le i \le h$, are disjoint sets with $|X_i| = n_i$ and where two vertices x and y from different sets X_i and X_j are jointed by exactly one edge $\{x,y\}$. A holey G-design, briefly denoted by G-HD(T), is a triple $(X, \{X_i; 1 \le i \le h\}, \mathcal{A})$ with $X = \bigcup_{i=1}^h X_i$, where $T = n_1^1 n_2^1 \cdots n_h^1$ is the type of the holey G-design, \mathcal{A} is a collection of edge-disjoint subgraphs of DK_{n_1,n_2,\dots,n_h} , called blocks, such that each block is isomorphic to G and each edge of DK_{n_1,n_2,\dots,n_h} is jointed in exactly one block of \mathcal{A} . Usually, the type is denoted by exponential form, for example, the type $1^i 2^r 3^k \cdots$ denotes that 1 occurs i times, 2 occurs r times, etc..

In this paper, the discussed graphs are $C_{2k-1}^{(r)}$, i.e., one circle of length 2k-1 with one chord, where $r, 1 \leq r \leq k-2$, is the number of vertices between the ends of the chord. For given graph $C_m^{(r)}$, it is easy to see that the graph $C_m^{(r)}$ is the same graph as $C_m^{(m-2-r)}$. So, if $r > \lfloor \frac{m-2}{2} \rfloor$, we often use $C_m^{(m-2-r)}$ to express the graph. Obviously, there is no subgraph of K_v which is isomorphic to $C_{2k-1}^{(r)}$ when v < 2k-1. Therefore, we only consider the complete graphs with at least 2k-1 vertices. It is easy to see that the following lemmas hold.

Lemma 1.1^[1] The necessary conditions to exist a G-GD(v) are $v(v-1) \equiv 0 \pmod{2e(G)}$, $v \geq v(G)$, where e(G) and v(G) are the number of the edges and the vertices of G, respectively.

Received date: 2004-02-09

Foundation item: the Natural Science Foundation of Hebei Province (103146) and Doctoral Research Fund for Hebei Higher Learning Institutions

Lemma 1.2 The necessary conditions to exist a $C_m^{(r)}$ -GD(v) are $v(v-1) \equiv 0 \pmod{m+1}$ and $v \geq m$.

For $r = \lfloor \frac{k-2}{2} \rfloor$, the existence of $C_{2k-1}^{(r)}$ -GD(v), which called theta graphs, has been discussed in [2] and [3]. And the existence of $C_m^{(r)}$ -GD(v) for $4 \leq m \leq 8$ has been discussed in [4–7], which can be summarized as follows:

Lemma 1.3^[4-7] For $4 \le m \le 8$, the necessary conditions to exist a $C_m^{(r)}$ -GD(v) are also sufficient except (v, m, r) = (5, 4, 1) and (9, 8, 3).

2. General Structures and overall arrangement

In this section, we will give some unified methods to construct G-designs. The definition of BIBD and GDD can be found in [1].

Lemma 2.1 For given graph G and positive integers h, m, if there exist both a G- $HD(h^m)$ and a G-GD(h+w), then there exists a G-GD(hm+w), where w=0 or 1.

Proof Let (X, \mathcal{B}) be a G- $HD(h^m)$, where $X = \bigcup_{i=1}^m X_i$ with $|X_i| = h$. Suppose W be a w-set and m

$$X \cap W = \emptyset$$
. For $1 \leq i \leq m$, $(X_i \cup W, \mathcal{B}_i)$ is the known G - $GD(h+w)$. Letting $\mathcal{A} = \mathcal{B} \cup (\bigcup_{i=1}^m \mathcal{B}_i)$, then $(X \cup W, \mathcal{A})$ is a G - $GD(hm+w)$.

Lemma 2.2 For given graph G and w = 0 or 1, if there exists a B[s, 1; t], a G- $HD(h^s)$ and a G-GD(h + w), then there exists a G-GD(ht + w).

Proof Let X, H and W be t-set, h-set and w-set respectively, $Y = X \times H$ and $Y \cap W = \emptyset$. Denote the known designs by

$$B[s,1;t] = (X,\mathcal{B});$$

$$G-HD(h^s) = (B \times H, \{\{b\} \times H : b \in B\}, \mathcal{A}_B), \forall B \in \mathcal{B};$$

$$G-GD(h+w) = ((\{x\} \times H) \bigcup W, \mathcal{C}_x), \forall x \in X.$$

Define
$$\mathcal{A} = \{\mathcal{A}_B : B \in \mathcal{B}\} \bigcup \{\mathcal{C}_x : x \in X\}$$
, then $(Y \bigcup W, \mathcal{A})$ is a G - $GD(ht + w)$.

Lemma 2.3 For given graph G and w = 0 or 1, if there exists a B[s, 1; t + 1], a G- $HD(h^s)$ and a G-GD((s - 1)h + w), then there exists a G-GD(ht + w).

Proof Let X, H and W be (t+1)-set, h-set and w-set respectively, $Y = X \times H$ and $Y \cap W = \emptyset$. Denote the known designs by

$$B[s, 1; t+1] = (X \bigcup \{\infty\}, \mathcal{B}_0 \bigcup \mathcal{B}_1);$$

$$G-HD(h^s) = (B \times H, \{\{b\} \times H : b \in B\}, \mathcal{A}_B), \forall B \in \mathcal{B}_1;$$

$$G-GD((s-1)h+w) = ((B \setminus \{\infty\} \times H) \bigcup W, \mathcal{C}_B), \forall B \in \mathcal{B}_0,$$

where \mathcal{B}_0 is the blocks containing ∞ and \mathcal{B}_1 is the other blocks. Note that |W| = 0 or 1. Define $\mathcal{D} = \{\mathcal{A}_B : B \in \mathcal{B}_1\} \bigcup \{\mathcal{C}_B : B \in \mathcal{B}_0\},$ then $((X \times H) \bigcup W, \mathcal{D})$ is a G-GD(ht + w).

Lemma 2.4 For given graph G, positive integer i and w = 0 or 1, if there exists a $B_i[s, 1; t - i]$, a G- $HD(h^s)$, a G- $HD(h^{s+1})$, a G-GD(h + w) and a G-GD(h + w), then there exists a G-GD(h + w).

Proof Let (X, \mathcal{B}) be a $B_i[s, 1; t-i]$ with i parallel classes $\mathcal{P}_1, \mathcal{P}_2, \cdots, \mathcal{P}_i$. Suppose a_1, \cdots, a_i be distinct points that not belong to X. Adding the point a_j to each block B in \mathcal{P}_j , $1 \leq j \leq i$, we get a $\{s, s+1\}$ - $PBD(t) = (X \bigcup \{a_1, \cdots, a_i\}, \mathcal{D})$. Assign a weight h to each point $x \in X$ and denote the obtained h-set by Y_x . Similarly, assign a weight h to each point in $\{a_1, \cdots, a_i\}$ and denote the obtained (hi)-subset by Y'. Define $Y = Y' \bigcup (\bigcup_{X \in X} Y_x)$, which contains ht elements.

For any block $B \in \mathcal{D}$ with the weight type h^{s+1} (or h^s), there exists an ingredient G- $HD(h^{s+1})$ (or G- $HD(h^s)$) with block set \mathcal{A}_B . Suppose W be a w-set and $W \cap Y = \emptyset$. For every point $x \in X$, there exists an ingredient G- $GD(h + w) = (Y_x \cup W, \mathcal{A}_x)$. Similarly, for the set $\{a_1, \dots, a_i\}$, there exists an ingredient G- $GD(ih + w) = (Y' \cup W, \mathcal{A}')$. Let

$$\mathcal{A} = \mathcal{A}' \bigcup \{\mathcal{A}_B : B \in \mathcal{D}\} \bigcup \{\mathcal{A}_x : x \in X\}.$$

Then $(Y \cup W, A)$ is a G-GD(ht + w).

Now, we will give some results of the holey designs.

Lemma 2.5^[7] For integers k, t and r, $t \ge 1$, $k \ge 3$ and $1 \le r \le k-2$, there exists a $C_{2k-1}^{(r)}$ - $HD((2k)^{2t+1})$ and a $C_{2k-1}^{(r)}$ - $HD((4k)^{2t+1})$.

Lemma 2.6 There exists a $C_{2k-1}^{(r)}$ - $HD((4k)^u)$ for integer $u \equiv 0, 1 \pmod{3}$ and $u \geq 3$, where $k \geq 3$ and $1 \leq r \leq k-2$.

Proof By [1], there exists a $\{3\}$ - $GDD(2^u)$ for $u \equiv 0, 1 \pmod{3}$, $u \geq 3$. Suppose $(X, \mathcal{G}, \mathcal{B})$ be a $\{3\}$ - $GDD(2^u)$, where $X = \bigcup_{i=1}^u X_i$ and $\mathcal{G} = \{X_i : 1 \leq i \leq u\}$, $|X_i| = 2$. Assign a weight 2k to each point $x \in X_i$, $1 \leq i \leq u$ and denote the obtained 4k-set by Y_i . Let $Y = \bigcup_{i=1}^u Y_i$, which contains 4ku elements. For each weighted block $B \in \mathcal{B}$, there exists an ingredient $C_{2k-1}^{(r)}$ - $HD((2k)^3)$ with block set \mathcal{A}_B by Lemma 2.5. Define

$$\mathcal{A}=\{\mathcal{A}_B:\ B\in\mathcal{B}\}\ \text{and}\ \mathcal{G}'=\{Y_i:\ 1\leq i\leq u\}.$$
 Then $(Y,\mathcal{G}',\mathcal{A})$ is a $C_{2k-1}^{(r)}\text{-}HD((4k)^u).$

Lemma 2.7^[1] (1) There exists a B[3,1;v] if and only if $v \equiv 1,3 \pmod{6}$ and $v \geq 3$.

(2) For $v \equiv 3 \pmod{6}$, there exist $B_i[3,1;v]$ with i parallel classes, where $1 \le i \le \frac{v-1}{2}$.

Lemma 2.8 For given graph G and w = 0 or 1, if there exists a G- $HD(h^3)$, a G- $HD(h^4)$, a G-GD(ih + w) with i = 1, 2, 5, then there exists a G-GD(ht + w) for any $t \ge 1$.

Proof We consider the existence of G-GD(ht + w) from the following cases.

- (1) For $t \equiv 1, 3 \pmod{6}$, there exists a B[3, 1; t] by Lemma 2.7. Thus, there exists a G-GD(ht+w) by the known $G\text{-}HD(h^3)$, G-GD(h+w) and Lemma 2.2.
- (2) For $t \equiv 0, 2 \pmod{6}$, there exists a B[3, 1; t+1] by Lemma 2.7. Thus, there exists a G-GD(ht+w) by the known $G\text{-}HD(h^3)$, G-GD(2h+w) and Lemma 2.3.
- (3) For $t \equiv 3 + i \pmod{6}$, i = 1, 2, there exists a $B_i[3, 1; t i]$ by Lemma 2.7. So, letting t i = 6u + 3, the RB[3, 1; t i] is just a $B_{3u+1}[3, 1; t i]$. By Lemma 2.4, there exits a G-GD(ht + w) if $3u + 1 \ge 1$ (for i = 1) or $3u + 1 \ge 2$ (for i = 2) except for the case (i, u) = (2, 0), i.e., t = 3 + 2 = 5. But, G-GD(5h + w) is known.

Theorem 2.9 For w = 0 and 1, $k \ge 5$, if there exists a $C_{2k-1}^{(r)}$ -GD(4k + w) and a $C_{2k-1}^{(r)}$ -GD(8k + w), then there exists a $C_{2k-1}^{(r)}$ -GD(v) for $v \equiv 0, 1 \pmod{4k}$.

Proof By Lemmas 2.5 and 2.6, there exist $C_{2k-1}^{(r)}$ - $HD((4k)^u)$ for u = 3, 4, 5 and $1 \le r \le k - 2$. So, there exist $C_{2k-1}^{(r)}$ - $GD(5 \cdot 4k + w)$ for w = 0 or 1 by Lemma 2.1. Then, there exists a $C_{2k-1}^{(r)}$ -GD(v) by Lemma 2.8.

3. The construction of $C_{2k-1}^{(r)}$ -GD(v)

In this section, we will give a unified method to construct $C_{2k-1}^{(r)}$ -GD(v) for $k \geq 5$. In the construction of $C_{2k-1}^{(r)}$ -GD(v) on the set X, we will give the base blocks D. Denote the blocks in dev(D) as $(a_0, a_1, \cdots, a_{2k-2})$. Then, the chord is denoted by $(r, d) = \{a_i, a_{i+r+1}\}$, where a_i and a_{i+r+1} are the ends of the chord and the difference $d = |a_{i+r+1} - a_i|$. For integer $i \leq j$, A[i, j] denotes $(i, -(i+1), \cdots, (-1)^{j-i}j)$ and $A[i, j]^{-1}$ denotes $(j, -(j-1), \cdots, (-1)^{j-i}i)$.

Lemma 3.1 There exists a $C_{2k-1}^{(r)}$ -GD(4k+1) for $1 \le r \le k-2$.

Construction Let $X = Z_{4k+1}$. Considering the number of the block set, we only need to construct one base block.

Case 1 (k even) Let $D = (A([1, 2k] \setminus \{d, k\}), k)$. Choose the chord in the blocks as

$$(r,d) = \begin{cases} (4i+1,2i+2) = \{a_0, a_{4i+2}\}, & 0 \le i \le \frac{k-4}{2} \\ (4i+2,2i+2) = \{a_0, a_{4i+3}\}, & 0 \le i \le \lfloor \frac{k-6}{4} \rfloor \\ (4i+3,2i+2) = \{a_{2i+2}, a_{6i+6}\}, & 0 \le i \le \lfloor \frac{k-4}{4} \rfloor \end{cases}$$

Case 2 (k odd)

$$\text{Let } D = \left\{ \begin{array}{ll} (A([1,2k] \setminus \{2i+1,k-1\}),k-1), & 0 \leq i \leq \frac{k-3}{2} \\ (A([2,2k-2] \setminus \{2i+2,k\}),2k-1,1,-k,2k), & 0 \leq i \leq \frac{k-5}{2} \end{array} \right.$$
 Choose the chord in the blocks as $(r,d) = \left\{ \begin{array}{ll} (4i+1,2i+1) = \{a_0,a_{4i+2}\}, & 0 \leq i \leq \frac{k-3}{2} \\ (4i+3,2i+2) = \{a_0,a_{4i+4}\}, & 0 \leq i \leq \frac{k-5}{2} \end{array} \right.$

Proof Obviously, each difference in Z_{4k+1} appears exactly once in D or as the chord difference. In order to show that the range of r is filled full indeed, we present the following table.

D	r	range of r
	, , , , , , , , , , , , , , , , , , ,	Tange of 7
	$4i + 1 \ (0 \le i \le \frac{k-4}{2})$	$[1, k-3]_4 \cup [4, k-4]_4 (k \equiv 0 \pmod{4})$
		$[1, k-5]_4 \cup [4, k-2]_4 (k \equiv 2 \pmod{4})$
	$4i + 2 \ (0 \le i \le \lfloor \frac{k-6}{4} \rfloor)$	$[2, k-6]_4 \ (k \equiv 0 \ (\text{mod } 4))$
Case 1		$[2, k-4]_4 \ (k \equiv 2 \pmod{4})$
	$4i + 3 \ (0 \le i \le \lfloor \frac{k-4}{4} \rfloor)$	$[3, k-5]_4 \cup \{k-2\} \ (k \equiv 0 \pmod{4})$
		$[3, k-3]_4 \ (k \equiv 2 \pmod{4})$
	$4i + 1 \ (0 \le i \le \frac{k-3}{2})$	$[1, k-4]_4 \cup [2, k-3]_4 \ (k \equiv 1 \pmod{4})$
		$[1, k-2]_4 \cup [2, k-5]_4 (k \equiv 3 \pmod{4})$
Case 2	$4i + 3 \ (0 \le i \le \frac{k-5}{2})$	$[3, k-2]_4 \cup [4, k-5]_4 (k \equiv 1 \pmod{4})$
	_	$[3, k-4]_4 \cup [4, k-3]_4 (k \equiv 3 \pmod{4})$

Table 1

Below, what we need to do is to verify that all vertices in D_0 are distinct, which implies that D

In Case 1, the vertex set of \widetilde{D}_0 is $[-k,k] \setminus \{-(i+1), \frac{k}{2}\}$.

In Case 2, the vertex set of \widetilde{D}_0 is

$$\left\{ \begin{array}{ll} [-k,k] \setminus \{-(\frac{k-1}{2}),i+1\} & (\text{for } 0 \leq i \leq \frac{k-3}{2}) \\ [-(k-3),0] \cup ([2,k+1] \setminus \{i+2,\frac{k+3}{2}\}) \cup \{-k,-(k+1),-2k\} & (\text{for } 0 \leq i \leq \frac{k-5}{2}). \end{array} \right.$$

Lemma 3.2 There exists a $C_{2k-1}^{(r)}$ -GD(8k+1) for $1 \le r \le k-2$.

Construction Let $X = Z_{8k+1}$. Considering the number of the block set, we only need to construct two base blocks.

Case 1 (k odd)

Subcase 1.1 $(r \equiv 1, 2 \pmod{4})$

(1) Let $D_1^1 = (k-3, A([3, k-4] \setminus \{d\}), A([k-2, 2k-1] \setminus \{k, k+1\}), 3k, -2k, -(3k+1), -1, 2)$ and choose the chord as $(r,d) = (4i+2, k-4-2i) = \{a_0, a_{4i+3}\}, 0 \le i \le \frac{k-7}{2}$;

$$D_1^2 = (k-3, A([4, 2k-1] \setminus \{k-3, k, k+1\}), 3k, -2k, -(3k+1), -2, 3)$$

with the chords $(r,d) = (4i+2,1) = \{a_0, a_{4i+3}\}, i = \frac{k-5}{2}, \frac{k-3}{2}$.

(2) Let $D_2 = (3k-1, A([2k+1, 3k-2] \setminus \{d\}), A[3k+2, 4k], -k, -(k+1))$ with the chords $(r,d) = (4i+2,2k+2i+1) = \{a_0, a_{4i+3}\}, \ 0 \le i \le \frac{k-3}{2}.$

Subcase 1.2 $(r \equiv 0, 3 \pmod{4})$

(1) Let
$$D_1 = (k+2, -1, 3, -A[5, k-1], -A([k+3, 2k-2] \setminus \{d\}), -(2k+3), -(k+1), -(2k+1), 2k+4, -k, 2k+2)$$

with the chords $(r,d) = \begin{cases} (r,d) = (4i+4,k+5+2i) = \{a_0,a_{4i+5}\}, & 0 \le i \le \frac{k-7}{2} \\ (r,d) = (4i+4,k+5) = \{a_0,a_{4i+5}\}, & i = \frac{k-5}{2} \end{cases}$. (2) Let $D_2 = (3k, -2, 4, A([2k+5, 4k] \setminus \{3k-1, d\})^{-1}, -2k, -(2k-1))$

with the chords $(r,d) = (4i+4,3k+3+2i) = \{a_0,a_{4i+5}\}, \ 0 \le i \le \frac{k-5}{2}$

Case 2 (k even)

Subcase 2.1 $(r \equiv 2, 3 \pmod{4})$

- (1) Let $D_1 = (k+1, 2k+2, -(2k+1), A([k+2, 2k-2] \setminus \{d\})^{-1}, A[2, k-2]^{-1}, -k, -(k-1))$ with the chords $(r,d) = (4i+2, k+2+2i) = \{a_0, a_{4i+3}\}, 0 \le i \le \frac{k}{2} - 2.$
- (2) Let $D_2 = (3k+1, A([2k+3, 4k] \setminus \{3k+1, d\})^{-1}, -2k, -(2k-1))$ with the chords $(r,d) = (4i+2,3k+1+2i) = \{a_0, a_{4i+3}\}, \ 0 \le i \le \frac{k}{2} - 2.$

Subcase 2.2 $(r \equiv 0, 1 \pmod{4})$

(1) Let $D_1^1=(k-2,-4k,4k-2,A([3,2k-3]\setminus\{d,k-2,k+1,k+2\}),-2k,-1,2,2-2k,2k-1)$ with the chords $(r,d)=(4i+4,k-5-2i)=\{a_0,a_{4i+5}\},\ 0\leq i\leq \frac{k}{2}-4;$

$$D_1^2 = (k-2, -4k, 4k-2, A([4, 2k-3] \setminus \{k-2, k+1, k+2\}) - 2k, -2, 3, -(2k-2), 2k-1)$$

with the chords $(r,d) = (4i+4,1) = \{a_0, a_{4i+5}\}\ i = \frac{k}{2} - 3, \frac{k}{2} - 2.$

(2) Let $D_2 = (A([2k+1, 4k-4] \setminus \{d, 3k+2\}), -(k+1), -(k+2))$ with the chords (r, d) = $(4i+4,3k-2i-1)=\{a_0,a_{4i+5}\},\ 0\leq i\leq \frac{k}{2}-2.$

Proof In the Case 1, the construction requests $k \geq 7$. The construction for k = 5, i.e., $C_9^{(r)}$ -GD(41), r = 1, 2, 3, will be given in the following examples. Obviously, each difference in Z_{8k+1} appears exactly once in $D_1 \cup D_2$ or as one of the chord differences. The following table will show that all vertices in each number-tuple are distinct.

D		$\{\widetilde{D}\}$		
	D_1^1	$[-2,k-3] \cup ([k,\frac{3k-7}{2}] \setminus \{\frac{3k-7}{2}-i\}) \cup [\frac{3k+3}{2},2k] \cup \{\frac{3k-3}{2},3k,-(3k+1)\}$		
case 1.1	D_{1}^{2}	$[-1, k-3] \cup [k+1, \frac{3k-7}{2}] \cup [\frac{3k+3}{2}, 2k] \cup {\frac{3k-3}{2}, 3k, -(3k+1), -3}$		
	D_2	$([-(3k+1), -\frac{5k+5}{2}] \setminus \{-(3k-i+1)\}) \cup [2k+1, 3k-1] \cup [-\frac{5k-3}{2}, -2k] \cup \{0, k+1\}$		
	D_1	$([0, \frac{k-3}{2}] \setminus \{\frac{k-5-2i}{2}\}) \cup ([\frac{k+5}{2}, 2k-1] \setminus \{k\}) \cup \{-(3k+6), -(2k+2), -(k+5), -(k+2), -4\}$		
case 1.2	D_2	$[3k, 4k-1] \cup ([-\frac{3k-3}{2}, 1-k] \setminus \{-\frac{3k-2i-5}{2}\}) \cup [3-2k, -\frac{3k+1}{2}] \cup \{0, 2k-1, 3k-2\}$		
	D_1	$[k+1, \frac{5k-4}{2}] \cup ([\frac{5k+4}{2}, 3k] \setminus {\frac{5k+2i+4}{2}}) \cup {0, k-1, 3k+3}$		
case 2.1	D_2	$[3k+1,4k-1] \cup [1-2k,-\frac{3k+2}{2}] \cup ([-\frac{3k-2}{2},-k] \setminus \{-\frac{3k-2i-2}{2}\}) \cup \{2k-1,0\}$		
	D_1^1	$[-3, k-4] \cup [1-2k, -3k-2] \cup ([k-2, 2k-2] \setminus \{\frac{3k-2i-10}{2}, \frac{3k-6}{2}, \frac{3k-2}{2}\})$		
case 2.2	D_1^2	$[-2, k-4] \cup ([k, 2k-2] \setminus \{\frac{3k-6}{2}, \frac{3k-2}{2}\}) \cup \{1-2k, -4, -3k-2, k-2\}$		
	D_2	$[2k+3,3k] \cup ([-3k,-2k-2] \setminus \{-\frac{5k+2i+2}{2},-\frac{5k-2}{2},3-k,k+2\})$		

Table 2

In order to show that the range of r is filled full indeed, we present the following table.

D		r	range of r	
	D_1^1	$4i + 2 \ (0 \le i \le \frac{k-7}{2})$	$[2, 2k - 4]_4 =$	
case 1.1	D_1^2	$4i + 2 \ (i = \frac{k-5}{2}, \frac{k-3}{2})$	$[1, k-4]_4 \cup [2, k-3]_4 (k \equiv 1 \pmod{4})$	
	D_2	$4i + 2 \ (0 \le i \le \frac{k-3}{2})$	$[1, k-2]_4 \cup [2, k-5]_4 (k \equiv 3 \pmod{4})$	
	D_1	$4i + 4 \ (0 \le i \le \frac{k-5}{2})$	$[4, 2k - 6]_4 =$	
case 1.2		-	$[3, k-2]_4 \cup [4, k-5]_4 (k \equiv 1 \pmod{4})$	
	D_2	$4i + 3 \ (0 \le i \le t - 1)$	$[3, k-4]_4 \cup [4, k-3]_4 (k \equiv 3 \pmod{4})$	
	D_1	$4i + 2 \ (0 \le i \le \frac{k-4}{2})$	$[2, 2k - 6]_4 =$	
case 2.1		_	$[2, k-2]_4 \cup [3, k-5]_4 (k \equiv 0 \pmod{4})$	
	D_2	$4i + 3 \ (0 \le i \le t - 1)$	$[2, k-4]_4 \cup [3, k-3]_4 (k \equiv 2 \pmod{4})$	
	D_1^1	$4i + 4 \ (0 \le i \le \frac{k-8}{2})$	$[2, 2k - 4]_4 =$	
case 2.2	D_1^2	$4i + 4 \ (i = \frac{k-6}{2}, \frac{k-4}{2})$	$[1, k-3]_4 \cup [4, k-4]_4 (k \equiv 0 \pmod{4})$	
	D_2	$4i + 4 \ (0 \le i \le \frac{k-4}{2})$	$[1, k-5]_4 \cup [4, k-2]_4 (k \equiv 2 \pmod{4})$	

Table 3

Example $C_9^{(r)}$ -GD(41) with r = 1, 2, 3.

Construction Let $X = Z_{41}$. We should construct two base blocks D_1 and D_2 .

$$D_1^1 = (17, -18, 2, 3, -7, 8, -10, -4, 9);$$

$$D_1^2 = (-17, 18, 1, 2, 3, 7, 8, 9, 10);$$

$$D_2 = (14, A([11, 13] \setminus \{d\}), 15, -16, 19, -20, -5, -6).$$

Choose the chords $(r, d) = (1, 1) = \{a_0, a_2\}$ in the blocks of $dev(D_1^1)$ and $(r, d) = (1, 11) = \{a_0, a_7\}$ in the blocks of $dev(D_2)$.

Choose the chords $(r, d) = (2, 1) = \{a_0, a_3\}$ in the blocks of $dev(D_1^1)$ and $(r, d) = (2, 13) = \{a_0, a_3\}$ in the blocks of $dev(D_2)$.

Choose the chords $(r, d) = (3, 4) = \{a_0, a_4\}$ in the blocks of $dev(D_1^2)$ and $(r, d) = (3, 13) = \{a_0, a_4\}$ in the blocks of $dev(D_2)$.

Theorem 3.3 For $v \equiv 1 \pmod{4k}$ and $1 \leq r \leq k-2$, the necessary conditions to exist a $C_{2k-1}^{(r)}$ -GD(v) are also sufficient.

Proof By Lemmas 3.1 and 3.2, there exists a $C_{2k-1}^{(r)}$ -GD(4k+1), a $C_{2k-1}^{(r)}$ -GD(8k+1), respectively. Then, we obtain the conclusion by Theorem 2.9.

References:

- [1] COLBOURN C J, DINITZ J H. The CRC Handbook of Combinatorial Designs [M], CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
- [2] BLINCO A. On diagonal cycle system [J]. Australasian J. Combin., 2001, 24: 221-230.
- [3] BLINCO A. Decompositions of complete graphs into theta graphs with fewer than ten edges [J]. Util. Math., 2003, **64**: 197–212.
- [4] BERMOND J C, HUANG C, ROSA A. et al. Decomposition of complete graphs into isomorphic subgraphs with five vertices [J]. Ars Combin., 1980, 10: 211-254.
- [5] BERMOND J C, SCHÖNHEIM J. G-decomposition of K_n, where G has four vertices or less [J]. Discrete Math., 1977, 19: 113-120.
- [6] MARTINOVA M. An isomorphic decomposition of K₂₄ [J]. ARS Combin., 1999, **52**: 251–252.
- [7] KANG Qing-de, ZHANG Yan-fang, ZUO Hui-juan. λ-packings and λ-coverings by k-circles with one chord
 [J]. Discrete Math., 2004, 279: 287–315.

完备图分拆为带一条弦的 (2k-1)- 长圈

单秀玲, 康庆德 (河北师范大学数学与信息科学学院,河北 石家庄 050016)

摘要: 本文给出了构造 G- 设计的一个统一方法及当 $v \equiv 1 \pmod{4k}$ 时的 $C_{2k-1}^{(r)}$ -GD(v) 的存在性,其中 $C_{10}^{(r)}$, $1 \le r \le k-2$ 表示带一条弦的 2k-1 长圈,r 表示弦两个端点间的顶点个数.

关键词:图设计;带洞图设计;差.