

新型测**地**声呐—— GPY 高分辨地层剖面仪

华乐荪 (中国科学院声学研究所) 1986年7月2日收到

本文介绍了一种能工作于特浅水域的高分辨地层剖面仪。首先分析了国际现有产品存在的技术问题,然后阐述 GPY 中所采用的声学和信号处理上的新技术,最后介绍它的主要技术特点及应用效果。

一、引 言

高分辨测地声呐(浅地层剖面仪)能连续、 实时地测绘航船正下方海底下十米的地层剖面 图,理论上的最佳分辨率可达 0.1 米左右. 作 为一种新的技术手段,其快速、经济、直观等特 点为其它测量方法所不及,因此国际上已将它 列为水下地质调查的常规项目,而可供选用的 商品型号不下数十种. 在此情况下,我们研制 的产品必须有其特殊的性能.

从发展史看,这类声呐用于海底调查是从 低频测深仪演变而来,后来成为水下工程地质 调查的工具,是一个从定性观察发展到定量测 量的过程.但技术上一直无重大突破,这就造 成落后的技术和很高的要求之间矛盾日益尖锐 起来.具体说,目前国际上流行的设备存在下 列共同缺点:(1)盲区大.没有一个能在3米 以内特浅水域满意工作,而造码头、筑填、麋浚 等工作往往要在这种地区进行;(2)剖**酚图中** 假地层记录多.如一条海底线会记录成两条或 多条相互平行的条纹,再加上旁侧反射、水**展多** 次反射等等的杂波干扰,即使是判图专家有时 也感到棘手;(3)输出信嗓比差.这既来源于 声基阵在低频段很坏的指向特性,也来源于系 统设计上的缺陷. 总之,要从这类设备获得一幅没有干扰,没 有假地层记录的机会不多,特别是 3 米以内浅 水域的探测禁区更限制了应用范围。本实验室 研制成功的 GPY 高分辨地层剖面仪解决或部 分解决了这些问题。

二、流行产品中的主要技术问题

首先,声基阵的指向特性太差,导致大量干 扰进入接收机,由于必须便于携带,其尺寸不 能太大、目前大部份产品的基阵线度约在半米 左右,3千赫时约为一个波长,指向性开角为 50°-60°间, 而真正的问题则在于声轴背向和 90°方向的灵敏度太大。 2 千赫以下的低频段 上几乎没有指向性,声波在 4π 立体角内全向发 射,于是各个方向的杂乱回波都涌向接收点,船 船航行噪声等水平方向上的干扰也大量进入接 收机,于是剖面图上出现大量干扰条纹。 其中 最有规律也常见到的是直达声和海面反射所致 "鬼影"。图1显示其产生机理。在发射换能器 向海底发射探测脉冲 P. 的同时,由于指向性不 良,也向海面辐射脉冲,此脉冲到达海面时被海 面以近乎全反射的方式再次折回海底,这就是 P_{A} . 海底对 P_{A} 和 P_{A} 的回波分别是 P_{A} 和 P_{S} ; 当 后者到达海面时,分别被反射而得到 P' 和 P'. **于是,**接收阵的水听器输出就出现四个海底回

•. 1 •.

应用声学

图 1 "鬼影"产生的示意图

P₁——发射的探测脉冲。P₁——由后辐射所致的海面 反射脉冲。P'₁, P'₂——分别为P₁, P₂的海底反射脉冲。 P'₁, P'₂——分别为P'₁, P'₂被海面反射后又被水听器收 到的脉冲。

图 2 日产某型号剖面仪在黄浦江的探测记录. 波,后面三个就是"鬼影"。图 2 是日产某型号

• 2 •

在黄浦江的测量记录,图中和海底线完全平行的是"鬼影"。图 3 为美产某型号在宝钢码头前测量记录,直达声和"鬼影"形成大量干扰条纹。

其次,发射换能器的余振 F扰使其不能用 于特浅水域.众所周知,任一实际的机械振动 系统都有惯性,在策动力撤除后,都有一个余振 的过渡过程.海底回波和余振干扰之比可表为

$$\frac{P_e}{P_r} = \frac{A_{r1} \cdot R_0}{C_w \cdot \iota \cdot D_t D_r} e^{at} \frac{P_0}{P_m}$$
(1)

其中: P_e——海底回波的声压幅值, P_r——海 底回波到达接收点的发射换能器余振幅值, A_{r1}——海底反射系数, R₀——发射换能器到接 收水听器的距离, P₀——离发射换能器1米处 声轴上探测脉冲的声压幅值, P_m——策动力撤 除瞬间余振在离换能器1米处声轴上的声压幅 值, D_r, D_r——分别为发射换能器和接收水听器 阵的指向性衰减因子, C_w——水中声速, r—— 从发射至海底回波到达接收点间时延, α—— 余振衰减常数.

上式表明,比值和 R。有一次方关系,并且 随:的增加而增加.如把余振衰减到和海底回 波相等作为系统盲区的边界,则从 P_e/P_e = 1 可 以得到

$$t_0 e^{-\alpha t_0} = \frac{R_0 A_{r1}}{C_w \cdot D_t \cdot D_r} \cdot \frac{P_0}{P_m}$$
(2)

解出 to 后,从 ho = C_w・to/2 即得盲区 ho 的数 值. 图 3 中收发换能器相距 Ro = 7.5 米,该 处水深 13-17 米,直达声的余振干扰一直延

6卷2期

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

伸至海底。

最后,现有声系统的效率低、重量大,不便 于在浅水区工作的小船使用.高分辨剖面仪的 地层分辨能力要求达到 0.15 米,这就决定它的 声视频脉冲的宽度 r = 0.2 毫秒,相应频谱带 宽 W = 5 千赫.从另一角度看,地层对声波 的吸收(按分贝计)约和频率的一次方成正比, 为了保证有一定的穿透能力,工作频率必须尽 量低,往往必须将低频端达到1千赫附近,甚至 更低.这样必然使声源的辐射带宽达到两个倍 频程以上,而这种低频宽带声源,迄今为止,都 是效率低而重量大.

三、GPY 声系统

1. 声源的特性

GPY 采用改进型电磁脉冲声源⁽¹⁾,在同类 声源中效率较高、重量较轻,并且脉宽和辐射声 能便于调节,可适应不同的探测需要. 80 焦耳 时脉宽 0.1 毫秒,分辨率较好;200 焦耳时脉宽 0.6 毫秒,穿透力较强. 表 1 是其主要技术数 据. 作为对比,也列出了美 UNIBOOM-230, 美 O. R. E 以及加拿大 DTS 的有关数据.

表1 GPY 技术指标及与国外一些产品比较

	储能量 (焦耳)	峰值源级 (分贝)	发射脉宽 (毫秒)	重量(公斤)	
				发射阵	发射机
GPY	40	103	0.1		
	80	106	0.2		
	120	107	0.3	29.5	3?
	160	108	0.5		
	200	111	0.6		
UNBOOM —230 (美)	300	107	0.2	90	73
DTS (加拿大)	500	122	0.2	350*	
O. R. E (美)	350	119	0.05	49	74.8

* 包括发射机和水听器在内的拖鱼总重.

2. 声基阵的特性

GPY 换能器基阵以多层空气反声材料作

图 4 GPY 高分辨地层剖面仪的声基阵。

图 5 GPY 和国外某系统基阵指向性的比较

障板,安装在接近流线型的不锈钢导流罩中(图 4),并有可靠的减震去耦措施.背向辐射比声 轴低 20-26分贝,90°方向也低13-15分贝 以上.图5是实测指向性图,它表明GPY比 某国外的系统5(a)要好得多.因此,当接收、发 射换能器采取分置形式时,即便是一前一后紧 挨着装,剖面图上也不出现直达声记录.实测 过的两种国外型号,则常见直达声.

图 6 GPY 合置声基阵实测回波记录

• 3 •

为了减少测深误差,GPY 在浅海工作时采 取合置形式.图6是 GPY 实验用合置基阵在 杭州湾锚地的实测示波图.该处是较硬的淤泥 底,换能器离海底约 2.5米,海底反射比背景高 约 10 分贝.如果海底很软 (*A*_n 很小),则从式 (1) 知,信噪比会有所降低,需用信号处理技术 来改善。

四、GPY 的信号处理

1. 时变滤波

据作者分析¹¹¹,使输出信噪比最大的接收 滤波器,其中心频率为

$$\omega_{0\max} \approx 2\pi / \sum_{i=1}^{n-1} H_i \beta_i$$
$$\approx 4\pi / (\bar{C}_{gh} \cdot t_{gh} \cdot \bar{\beta})$$
(3)

其中: H_i — 第 *i* 层地层厚度, β_i — 第 *i* 层 地层的吸收系数, \overline{C}_{gh} — 从海底至待测层面 间的平均声速, ι_{gh} — 声波从海底到待测层面 的双程传播时间, $\overline{\beta}$ — 从海底到待测层面间 的平均吸收系数.

上式显示,为了使接收机和回波信号相匹 配,必须采用时变滤波器.目前国际上的商品 都使用固定带通滤波;为了对浅表层的探测能 得到系统允许的最高分辨率,滤波器频带必须 调到和整个辐射频带同样的宽度,这在接收较 深地层回波时,由于其高频分量已被吸收殆尽 而呈现大量冗余带宽,从而大大增加噪声的成 分.反之,如果滤波器带宽调到和某深处回波 的谱相匹配(从而在这个深度上获得最大输出 信噪比),则对浅表层的回波又严重失配而得不 到足够分辨率.总之,从这类系统得不到理想 的剖面记录.

GPY 采用的开关电容式时变滤波器¹³,能 对所有各个深度的回波都有近似匹配的效果, 同时在保证对浅表地层有最佳分辨率的前提 下,有明显抑制多次反射的作用.

2. 数字多次选加

s 4 9

GPY 采用一种专门设计的信号多次 迭加 电路, 只使用 4K 字节的 RAM 和少量辅助组

件,最多可实时迭加 8 次.如果满足同相迭加 条件(船的起伏完全被补偿),则迭加 n 次后,信 噪比可提高到 $10 \log n$.为了提高数据率,改变 传统的记录器笔针每转一圈发射一次为可发M次 (M = 1, 2, 4).

由于换能器随船舶的航行而往前移动,作 n次迭加时,换能器处在n个不同的空间位置 上. 如果船舶以速度V作匀速直线运动,而 脉冲重复周期为T,则相邻两个位置的距离为 $\Delta L = V \cdot T$.考虑到地层传播信道的参数不 随时间变化,则n次迭加的效果就如同间隔为 ΔL 的n个基元的线列阵一样,从而在低频段 上获得可贵的空间增益.

3. 数字余振抵消

合置基阵遇到水很浅而反射又很弱的海底

(a) GPY 余振抵消水池实验记录

(b) GPY 余振抵消长江口实验记录 图 7 余振抵消实验记录

6 卷 2 期

时,从式(1)可知,由于 An 和:都很小, P./P. 小.为此,我们发展了一种数字余振抵消技术. 其基本思想在于: 余振是确定性时间过程,只 要将此过程事先存储起来,在接收时将这部份 贡献扣除,就可得到没有余振的优良记录. 图 7(a)是水池实验记录,水深约1.5米.下线是 没有抵消措施的波形,池底反射混杂在余振干 扰中,不易识别;上线为经抵消处理后波形,干 扰大部去除, 池底反射清楚地显示出来. 图 7(b)是长江口实验记录. 上线是合置基阵直 接输出波形,余振很大,海底反射几乎不见;下 线经抵消处理和球面扩散补偿,余振基本消除, 海底反射清晰可见.

4. 双重 TVC 补偿和海底自动跟踪

为了将动态达到 100—130 分贝的回波信 号记录在动态只有 10 分贝左右的记录纸上,必 须有时间增益控制(TVC)电路.容易得到水 听器收到的回波信号为

$$P_e \propto \frac{A_{ri}}{t} e^{-\beta \bar{c}_{i_1}} \tag{4}$$

其中: A₁ — 待测层面的反射系数, **č**, **β** — 分别为从海底至待测层面间介质的平均声速和 平均吸收系数, - 从发射瞬间起算的时延 (1 — 从海底回波到达瞬间起算的时延. 目前 国际上流行产品的 TVC 电路,都采用从发射 瞬间开始的指数或直线式增益补偿电路,显然 道理上就不能得到完善的结果.在水深变化剧 烈的浅水区工作时,往往使操作者穷于应付. GPY 采用双重 TVC 补偿: 一套从发射起算 的球面扩散补偿,其增益按 $G_1 \propto i$ 变化;另一 套从海底回波出现起算的指数吸收补偿,按 $G_2 \propto e^{BC_1}$ 变化.经两次补偿后,输出信号的幅 度只是地层界面反射系数 A_{rl} 的函数而和时间 无关.因此,大大方便了操作;再辅以供选用的 对数压缩电路,就可实现海上操作的自动化.为 了正确确定海底回波出现时间,设计了一种海 底跟踪电路,用以排除水层中混响和其他杂波 的干扰.对常数 $\bar{\rho}$ 的确定, GPY 提供了手动 和自动两种估计方法.

五、GPY 的技术特点和应用效果

由于上述声系统和信号处理方面的新技术,GPY是第一个成功地使用于特浅水域的系统.其主要技术特点为:

1. 既适用于 3 米以内的特浅水域也适用于 大陆架地区.

用一套仪器,既获得高分辨率(0.1 毫秒的理论距离分辨率为7.5 厘米)又达到较大穿
透深度(0.6 毫秒脉宽、多次迭加时对淤泥层的

图 8 GPY 太淵实验记录(用分置基阵)

应用声学

5 €

图 9 GPY 长江口水下沙洲探测记录

穿透达 100 米).

3. 剖面图假地层记录少,清晰度高。

4. 抗干扰能力强,即使有船近旁驶过,图上 也无反应。

5.一机多用。可兼作数字测深仪(分辨率 0.1米)和用电表指示海底软硬程度。

6. 半自动化,便于操作.

7. 重量轻(仪器总重 120 公斤)、耗电少(可 配 2 千伏安小电机工作).

GPY 研制成功后,累计测线已达 七千公 里,完全证实前述技术措施的有效性. 在抚仙 湖 93 米水深处,得到了约 90 米的地层穿透记 录,层次清楚. 在平均水深1.89米、底质又是硬 质黄土的太湖探测成功,平均穿透深度为 30-40 米(图 8),是国外仪器所不能做到的,对地 学研究有重大参考价值.在上海港水系三整治 工作的探测中(图 9),通过现场对比,证明胜过 美制某型号商品,已选为地矿部和上海经济区 水下测量的常年观察项目.

参考文献

- 华乐荪、胡嘉忠、冯裕章, 声学技术, 1-1(1982), 21- 30.
- [2] 华乐荪,第三届全国声学会议论文,1982.
- [3] 华乐荪、关平,应用声学, 2-4(1983), 8-13 英译文 载 Chinese Journal of Acoustics, 3(1983), 209-218.
- [4] 田常德,声学技术, 3-4(1984), 62-64.

引信动作(水下爆炸声源)距离测定仪

<u>许祯镛</u> 吴冠君 徐钦善 郭洪信 王智慧 张梅泽 郑宝温 刘彩芬 (中国科学院声学研究所)

1986年3月31日收到

本文介绍了一种高精度微机化水下爆炸声源被动测距设备。本设备用于试验场监测运动声源或其 它爆炸声源离目标靶的径向距离,以及击水和引爆的时差等数据。本设备基于水下被动测距原理,采用 长直线水听器基阵、单板微型计算机及专用软、硬件,实现整个测量过程的全自动化。

一、引 言

本设备是为试验场研制的一个水下专门测 量装置,用来测量运动体炸点离目标的径向距 离和击水到引爆的时差等数据.要求对上述参

• 6 •

数进行实时测量和记录.常规的光学、雷达测距 设备对此是无能为力的,唯一有效的方法是采 用水下被动测距声纳系统. 众所周知,水下被 动测距是一个高难度的课题.虽然三点几何测 距其原理是简明的,但由于水下声源本身的特 点,水下信道特性以及采用的技术手段的不同,

6 卷 2 期