首页 | 本学科首页   官方微博 | 高级检索  
     


Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility
Authors:Kyrylo Klimenko  Victor Kuz'min  Liudmila Ognichenko  Leonid Gorb  Manoj Shukla  Natalia Vinas  Edward Perkins  Pavel Polishchuk  Anatoly Artemenko  Jerzy Leszczynski
Affiliation:1. Department of Molecular Structure and Chemoinformatics, A.V. Bogatsky Physical‐Chemical Institute National Academy of Sciences of Ukraine, Odessa, Ukraine;2. Laboratoire de Chemoinformatique, (UMR 7140 CNRS/UniStra) Université de Strasbourg, Strasbourg, France;3. HX5 LLC, Vichsburg, Mississippi;4. US Army Engineer Research and Development Center, Vicksburg, Mississippi;5. Institute of Molecular and Translational Medicine, Palacky University Olomouc, Olomouc, Czech Republic;6. Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, Jackson, Mississippi
Abstract:
A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure–property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation urn:x-wiley:01928651:media:jcc24424:jcc24424-math-0001, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high‐efficiency QSPR model. The performance of the model is assessed using cross‐validation and external test set prediction. Predictive capacity of developed model is compared with COSMO‐RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
Keywords:QSPR  feature net  temperature‐dependent  aqueous solubility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号