首页 | 官方网站   微博 | 高级检索  
     


Quantum chemical study of the autoxidation of ascorbate
Authors:Nils Herrmann  Norah Heinz  Michael Dolg  Xiaoyan Cao
Affiliation:Department of Chemistry, Institute for Theoretical Chemistry, University of Cologne, Cologne, Germany
Abstract:Reactions involved in the autoxidation of ascorbate have been investigated with quantum chemical first‐principles and ab initio methods. Reaction energies and Gibbs energies of the reactions were calculated at the density functional theory level applying the gradient‐corrected BP86 and the hybrid B3LYP functionals together with def2‐TZVP basis sets. Results of single‐point CC2, CCSD, and CCSD(T) calculations were used for calibration of the density functional theory data and show excellent agreement with the B3LYP values. Based on the Gibbs energy ascorbic acid AscH2 is found to be the energetically lowest species in aqueous solution, whereas the monoanion ascorbate AscH urn:x-wiley:01928651:media:jcc24408:jcc24408-math-0001 is the most abundant one near pH = 7. Asc urn:x-wiley:01928651:media:jcc24408:jcc24408-math-0002 was found to be the preferred reducing agent for autoxidation and oxidation processes. The results also support a metal‐catalyzed synthesis of the reactive oxygen species H2O2 according to a redox cycling mechanism proposed in literature. © 2016 Wiley Periodicals, Inc.
Keywords:ascorbic acid  ascorbate  autoxidation  density functional theory  coupled cluster theory  texaphyrin  ionization potential  electron affinity  motexafin gadolinium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号