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1 Introduction and Main Results

In this paper, we shall provide a proof of Strichartz estimates for Schrödinger equations

with non-degenerate and non-smooth coefficients. Such kinds of equations are of their physical

background, such as the Zakharov-Schulman system in water wave problems (see [30]) and

Ishimori equations in ferromagnetism (see [12]).

We first introduce some assumptions. Consider the initial value problem





i∂tu−
n∑

j,k=1

∂j(ajk(t, x)∂ku) +
n∑

j=1

bj(t, x)∂ju+ c(t, x)u = 0,

u(0) = u0,

(1.1)

with the following hypotheses

(H1) ajk(t, x) ∈ C1(R, C3(Rn)), ajk = εjδjk outside R × B(0, 1) with εj ∈ {1,−1} and

B(0, 1) = {x : |x| ≤ 1}. And the matrix (ajk)n×n is real, symmetric and non-degenerate, that

is, there exists a constant ν > 0, such that

∀ (t, x, ξ) ∈ R× Rn × Rn,
1

ν
|ξ| ≤ |(ajk)ξ| ≤ ν|ξ|.

(H2) bj(t, x) ∈ L∞(R, C1
0 (Rn)); c(t, x) ∈ L∞(R, C1

0 (Rn)).

Then there exists a constant c0 such that

|bj| ≤ c0κ(|x|), ∀ j = 1, · · · , n

with κ(|x|) = (1 + |x|2)−N/2 for some integer N > n.
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Let P denote the Schrödinger operator

P = i∂t + L = i∂t −
n∑

j,k=1

∂jajk∂k +

n∑

j=1

bj∂j + c (1.2)

and a(t, x, ξ) be the principal symbol of operator A = −
n∑

j,k=1

∂jajk∂k, i.e.,

a(t, x, ξ) =

n∑

j,k=1

ajk(t, x)ξjξk.

Denote by Ha the Hamiltonian vector field

Ha =

n∑

j=1

(∂ξja∂xj − ∂xja∂ξj ).

Then the Hamilton flow (xh, ξh) is defined as





dxh

dh
= aξ(t, xh, ξh), x(0) = x,

dξh

dh
= −ax(t, xh, ξh), ξ(0) = ξ,

(1.3)

where h is the natural parameter along the Hamilton flow. We know that the solution to system

(1.3) exists in the interval (−δ, δ) with δ = δ(t, x, ξ).

The last hypothesis is as follows (see also [13]).

(H3) Non-trapping condition: For each (t, x, ξ) ∈ R × Rn × Rn\{0}, and for each µ > 0,

there exists h0 with 0 < h0 < δ such that

|xh0(t, x, ξ)| ≥ µ.

Remark 1.1 In view of the flatness of ajk(t, x) outside the region R × B(0, 1), it suffices

to assume µ = 1 for bounded t ∈ R.

The main results of this paper are as follows.

Theorem 1.1 Let (H1)–(H3) be fulfilled. Then for any T > 0, the unique solution of (1.1)

satisfies

‖u‖Lq([0,T ],Lr(Rn)) ≤ C(T, ajk, ν, n)‖u0‖L2(Rn) (1.4)

for any admissible pair (q, r), such that

2

q
= n

(1

2
− 1

r

)
, 2 ≤ q ≤ +∞ for n ≥ 3,

2

q
= 2

(1

2
− 1

r

)
, 2 < q ≤ +∞ for n = 2.

Remark 1.2 (a) The regularity of ajk(t, x) can be relaxed to C1(R, C2,ε(Rn)) , ∀ ε > 0.

(b) The pair (2, n−2
2n ) is usually called endpoint, and the other pairs are called non-endpoints.
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Now we consider the following inhomogeneous equation with homogeneous initial data





i∂tu−
n∑

j,k=1

∂j(ajk(t, x)∂ku) +

n∑

j=1

bj(t, x)∂ju+ c(t, x)u = F (t, x),

u(0) = 0,

(1.5)

under the same hypotheses (H1)–(H3). By Duhamel’s formula, the solution to (1.5) has the

form

ΦF (t, x) =

∫ t

0

U(t, s)F (s, x)ds

with U(t) being the solution operator to equation (1.1). We have the following theorem.

Theorem 1.2 Let (q, r), (ρ, γ) be any non-endpoint admissible pairs and F (t, x) ∈ Lρ′

(R,

Lγ′

(Rn)) with 1
ρ + 1

ρ′
= 1. Then for any T > 0,

‖ΦF (t, x)‖Lq([0,T ],Lr(Rn)) ≤ C(T, ajk, ν, n)‖F (t, x)‖Lρ′([0,T ],Lγ′(Rn)). (1.6)

The inequalities (1.4) and (1.6) are known as Strichartz estimates, which are essential tools in

studying nonlinear evolution equations, such as, Schrödinger equation, wave equation and KdV

equation. For free Schrödinger equation, it was first given by Strichartz [22] when q = r = 2n+4
n

and then extended to non-endpoint case by Ginibre and Velo [9]. For inhomogeneous case, it

was obtained by Yajima [29] and Cazenave-Weissler [3]. The endpoint estimates were recently

proved by Keel and Tao [14]. When the operator A is an elliptic one with variable coefficients,

Staffilani and Tataru [23] proved (1.4) for compactly supported perturbation of flat Laplacian.

Similar results were also got by Burq-Gérard-Tzvetkov [1], Hassel-Tao-Wunsch [10], Robbiano-

Zuily [18] and Salort [19]. When A is just non-degenerated, to the author’s knowledge, it is

still open.

We now would like to have a quick review of the well-posedness and local smoothing for

Schrödinger operator with variable smooth coefficients. For the elliptic case, they were proved by

Doi [7, 8] and Craig-Kappeler-Strauss [6] (see also the references therein). Very recently, Kenig-

Ponce-Rolvung-Vega proved local solutions for non-degenerate case in [13], but no Strichartz

inequality is given. In present paper, to be self-contained, we shall provide a short proof for

local smoothing effect through the similar method of Doi and Kenig-Ponce-Rolvung-Vega.

Next we will give the outline of our work. In Section 2, local smoothing estimates (see

Theorem 2.1) for equation (1.1) is proved. In Section 3, a constant coefficient dispersive estimate

is obtained. More precisely, if f(t, x) is spatially compactly supported for each t, then the

solution to the equation




i∂tw −

n∑

j=1

εj∂jjw = f(t, x),

w(0) = w0

(1.7)

satisfies the following estimate

‖w‖Lq([0,T ],Lr(Rn)) . ‖w0‖L2(Rn) + ‖f‖L2([0,T ],H−1/2(Rn)). (1.8)
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We give a new proof to (1.8) for non-endpoint case, which is based on smoothing effect of

homogeneous Schrödinger equation with constant coefficients. In Section 4, the following a

priori estimate

‖v‖Lq([0,T ],Lr(Rn)) . ‖v‖L2([0,T ],H1/2(Rn)) + ‖(i∂t +A)v‖L2([0,T ],H−1/2(Rn)) (1.9)

is proved for any v supported in [0, T ] × B(0, 1), which is the main result of our work. The

inequality (1.9) was first established for elliptic case in [23]. The main approach there is to

construct the approximate parametrix through FBI transform. For non-degenerated case, there

is something different. A more careful analysis is necessary. More precisely, one needs to

illustrate that the gradient flows, which start from the characteristic surface K = {(t, τ, x, ξ) |
p(t, τ, x, ξ) = 0}, can uniformly reach the surface Kd = {(t, τ, x, ξ) | p(t, τ, x, ξ) = d} for some

constant d 6= 0. Once this is proved, the estimates are reduced to the same settings in [23].

However in this paper, as proposed by Tataru, we would like to obtain the dispersive estimates

through the parametrix constructed in [15]. The details will be illustrated in this section. At

last we conclude the proof of Strichartz inequalities (1.4) and (1.6) with the aid of the estimates

(1.8) and (1.9).

2 Well-Posedness and Local Smoothing

We first introduce the notation of pseudo-differential operator with nonregular symbols (see

[25]) and a key lemma. Given a dyadic decomposition

1 =
∑

λ=2j j∈Z

s
( ξ
λ

)
=

∑

λ

sλ(ξ),

we define Sλu = sλ(D)u.

One can easily verify the following property

Proposition 2.1 If u ∈ Cr(Rn), then

sup
λ
λr‖Sλu‖L∞ < +∞. (2.1)

The following definition of pseudo-differential operator with nonregular symbol and the

Sobolev boundedness theorem are due to Taylor [25].

We define the Zygmund space Cr
∗(Rn) composed of u such that (2.1) is finite, namely

‖u‖Cr
∗

= sup
λ
λr‖Sλu‖L∞ < +∞.

Then Cr
∗ = Cr if r ∈ R+\Z+, Cr

∗  Cr if r ∈ Z+. Then one can introduce the pseudo-differential

operator with nonregular symbol.

Definition 2.1 Set r ∈ (0,+∞), we say p(x, ξ) ∈ Cr
∗S

m(Rn) provided for each multiindex

α ∈ Zn
+

|Dα
ξ p(x, ξ)| ≤ cα〈ξ〉m−|α|, (2.2)

‖Dα
ξ p( · , ξ)‖Cr

∗
(Rn) ≤ cα〈ξ〉m−|α| (2.3)

with 〈ξ〉 = (1 + |ξ|2)1/2.
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We define also the pseudo-differential operator Ψp with the symbol p(x, ξ) by

Ψpu(x) =
1

(2π)n

∫

Rn

e−ix·ξp(x, ξ)û(ξ)dξ.

Then the following boundedness result in Sobolev spaces holds (see [25, p. 52])

Lemma 2.1 If p(x, ξ) ∈ Cr
∗S

m, then

‖Ψp u‖Hs ≤ c‖u‖Hs+m

provided −r < s < r.

Another key lemma is concerning with non-trapping condition.

Lemma 2.2 Suppose (H1)–(H3) hold and κ(|x|) = (1 + |x|2)−N/2 (N > n). Then there

exists a constant c > 0 and a real classical symbol q(t, x, ξ) ∈ C1([0, T ], S0), such that

Haq ≥ κ(|x|)|ξ| − c, ∀ (t, x, ξ) ∈ [0, T ]× Rn × Rn. (2.4)

The elliptic version of above lemma is originally due to Doi [8]. And Kenig-Ponce-Rolvung-

Vega proved Lemma 2.2 for non-degenerate case in [13]. In the present paper, one can give a

simple proof as in [23].

Now we turn to the proof of local smoothing estimate. Consider the inhomogeneous equation






i∂tu−
n∑

j,k=1

∂j(ajk(t, x)∂ku) +

n∑

j=1

bj(t, x)∂ju+ c(t, x)u = h(t, x),

u(0) = u0.

(1.1)′

Then we have the following a priori estimate.

Lemma 2.3 Assume that (H1)–(H3). Then there exists a constant c depending on n, ν,

ajk and T , such that for all u ∈ C([0, T ],S(Rn)) the following estimates holds

(1) sup
0≤t≤T

‖u(t)‖2
L2 +

∫ T

0

∫

Rn

|J1/2u(x, t)|2κ(|x|)dxdt

≤ c
(
‖u(0)‖2

L2 +

∫ T

0

‖(i∂t + L)u‖2
L2dt

)
, (2.5)

(2) sup
0≤t≤T

‖u(t)‖L2 ≤ c
(
‖u(0)‖L2 +

∫ T

0

‖(i∂t + L)u‖L2dt
)

(2.6)

with J = (I − ∆)1/2.

Proof Setting h(t, x) = ∂tu− iLu, one obtains

∂tu = iLu+ h(x, t). (2.7)

By Lemma 2.2, there exists a real symbol p = (n+ 1)c0q ∈ C1([0, T ], S0) and c > 0, such that

Hap ≥ (n+ 1)c0κ(|x|)|ξ| − c. (2.8)
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Set k(t, x, ξ) = ep, k̃(t, x, ξ) = e−p and correspondingly K(t, x,D) = Ψk, K̃(t, x,D) = Ψek.

Observe that k(t, x, ξ), k̃(t, x, ξ) ∈ C1([0, T ], S0). We also define

N(u)2 = ‖Ku‖2
L2 + ‖u‖2

−1. (2.9)

In what follows, we shall show that N( · ) is an equivalent norm of the standard L2 norm.

Noticing that

K̃K = I + Ψr1, r1 ∈ S−1, (2.10)

one has

‖u‖L2 = ‖K̃Ku− Ψr1u‖L2 . ‖Ku‖L2 + ‖u‖−1. (2.11)

The last part of (2.11) comes from the Sobolev Boundedness of classical pseudo-differential

operators, which verifies the equivalence.

Next we will set up the inequalities in Lemma 2.3 for N(u). First, we have

d

dt
|N(u)|2 =

d

dt
‖Ku‖2

L2 +
d

dt
‖u‖2

−1 = I + II. (2.12)

For II, one has

d

dt
‖u‖2

−1 = 2Re (J−1∂tu, J
−1u) = 2Re (iJ−1Lu+ J−1h, J−1u)

. 2Re (i[J−1, A]u, J−1u) +N(u)2 + (J−1h, J−1u),

where [ · , · ] is the commutator. Noticing [J−1, A] ∈ C2
∗S

0, we can employ the Lemma 2.1. It

follows that

d

dt
‖u‖2

−1 . N(u)2 +N(h)2. (2.13)

For I, one has

d

dt
‖Ku‖2

L2 = 2Re (∂t(K(t, x,D)u),K(t, x,D)u)

= 2Re(Ψ∂tk u,Ku) + 2Re (K∂tu,Ku) ≤ c1N(u)2 + 2Re (K(iLu+ h),Ku)

≤ c2N(u)2 + 2Re (i[K,A]u,Ku) + 2Re
(
i

n∑

j=1

bj∂jKu,Ku
)

+N(h)N(u)

= c2N(u)2 + 2Re (i[K,A]u,Ku) + 2Re (ΨbKu,Ku) +N(h)N(u) (2.14)

with b =
n∑

j=1

bjξj . Notice that

i[K,A]u = Ψq + Ψr2

with r2 ∈ C1
∗S

0 and q ∈ C2
∗S

1, i.e.,

q = {k, a} =

n∑

j=1

∂ξjk∂xja− ∂xjk∂ξja. (2.15)
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Since

{k, a} = −{a, p}ep = −{a, p}k,

we can get

i[K,A] = −Ψ{a,p}K + Ψr2 (2.16)

with r2 ∈ C1
∗S

0. By (2.8) and the hypothesis (H2),

Hap+

n∑

j=1

bjξj ≥ (n+ 1)c0κ(|x|)|ξ| − c− nc0κ(|x|)|ξ| = κ(|x|)|ξ| − c. (2.17)

Then one can apply sharp G̊arding inequality to Ψ({a,p}+b), that is,

−(Ψ({a,p}+b)Ku,Ku) ≤ −(κ(|x|)J1Ku,Ku) + cN(u)2

≤ −c3‖κ(|x|)1/2J1/2Ku‖2
L2 + cN(u)2

≤ −c3‖κ(|x|)1/2J1/2u‖2
L2 + cN(u)2. (2.18)

By (2.14), (2.16) and (2.18), we have

d

dt
‖Ku‖2

L2 ≤ −c4‖κ(|x|)1/2J1/2u‖2
L2 + c5N(u)2.

Then

d

dt
N(u)2 ≤ −c4‖κ(|x|)1/2J1/2u‖2

L2 + c6N(u)2 +N(h)N(u). (2.19)

To obtain (2.5), one finds that

d

dt
N(u)2 + ‖κ(|x|)1/2J1/2u‖2

L2 . N(u)2 +N(h)N(u). (2.20)

Integrating it with respect to t from 0 to T yields (2.5).

Since (2.19) also implies

d

dt
N(u)2 . N(u)2 +N(h)N(u),

one easily gets the estimates (2.6) by Gronwall inequality. This ends the proof.

Remark 2.1 The regularity of ajk can be relaxed to C2,ε. To convince this, it suffices to

notice that r2 ∈ Cε
∗S

0 is enough in (2.16).

Without difficulties, we can obtain the following theorem through Lemma 2.3 and the ar-

gument in [11, Chapter 23, §1].

Theorem 2.1 Assume that (H1)–(H3) hold. Then

(1) If h(t, x) ∈ L1([0, T ], L2(Rn)), then (1.1)′ has a unique solution u ∈ C([0, T ], L2(Rn))

satisfying

sup
0≤t≤T

‖u(t)‖L2 ≤ c(T, ajk, ν, n)
(
‖u0‖L2 +

∫ T

0

‖h(t, x)‖L2dt
)
.
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(2) If h(t, x) ∈ L2([0, T ], L2(Rn)), then (1.1)′ has a unique solution u ∈ C([0, T ], L2(Rn))

satisfying

sup
0≤t≤T

‖u(t)‖2
L2 +

∫ T

0

∫

Rn

|J1/2u(x, t)|2κ(|x|)dxdt ≤ c(T, ajk, ν, n)
(
‖u0‖2

L2 +

∫ T

0

‖h(t, x)‖2
L2dt

)

with J = (I − ∆)1/2.

3 The Estimates of Constant Coefficients Equation

Theorem 3.1 The unique solution w to equation (1.7) satisfies the estimate

‖w‖Lq([0,T ],Lr(Rn)) . ‖w0‖L2(Rn) + ‖f‖L2([0,T ],H−1/2(Rn)). (3.1)

The inequality was originally established in [23]. It is essential that f(t, x) is spatially

compactly supported. Here we give a new proof to the non-endpoint case. For endpoint case,

the construction is the same as the elliptic one in [23] and we will not repeat it. We first

introduce a technical lemma of Christ and Kiselev in [5].

Lemma 3.1 Let X and Y be Banach spaces and assume that k(t, s) is a continuous function

valued in B(X,Y ). Suppose that −∞ ≤ a < b ≤ +∞, and set

Tf(t) =

∫ b

a

k(t, s)f(s)ds, Wf(t) =

∫ t

a

k(t, s)f(s)ds.

Assume that 1 ≤ p < q ≤ +∞ and

‖Tf‖Lq([0,T ],Y ) ≤ C‖f‖Lp([0,T ],X).

Then

‖Wf‖Lq([0,T ],Y ) ≤
21−2(1/p−1/q)

1 − 2−2(1/p−1/q)
C‖f‖Lp([0,T ],X).

We now prove Theorem 3.1. Without loss of generality, we assume w0 = 0. Set A0 =

−
n∑

j=1

εj∂jj . Then w can be expressed in the form

w(t, x) =

∫ t

0

ei(t−s)A0f(s, x)ds.

From Lemma 3.1, it suffices to prove

∥∥∥
∫ T

0

ei(t−s)A0f(s, x)ds
∥∥∥

Lq([0,1],Lr(Rn))
. ‖f‖L2([0,T ],H−1/2(Rn)). (3.2)

By Strichartz estimates for flat Schrödinger operator,

∥∥∥
∫ T

0

ei(t−s)A0f(s, x)ds
∥∥∥

Lq([0,1],Lr(Rn))
=

∥∥∥eitA0

∫ T

0

e−isA0f(s, x)ds
∥∥∥

Lq([0,1],Lr(Rn))

.
∥∥∥
∫ T

0

e−isA0f(s, x)ds
∥∥∥

L2(Rn)
. (3.3)
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Then the estimate (3.2) is reduced to

∥∥∥
∫ T

0

e−isA0f(s, x)ds
∥∥∥

L2(Rn)
. ‖f‖L2([0,T ],H−1/2(Rn)). (3.4)

Since f(t, · ) is compactly supported, the inequality (3.4) can be rewritten as

∥∥∥
∫ T

0

e−isA0χ2(x)f(s, x)ds
∥∥∥

L2(Rn)
. ‖f‖L2([0,T ],H−1/2(Rn)), (3.4)′

where χ2(x) is a smooth cutoff function.

By the duality argument, this is equivalent to

‖χ2(x)e
−itA0g(x)‖L2([0,T ],H1/2(Rn)) . ‖g‖L2(Rn),

which is nothing else but the local smoothing estimates. This concludes our proof.

4 The Localized Variable Coefficients Estimates

Theorem 4.1 Assume that (H1)–(H3) are fulfilled. Then for any v(t, x) supported in [0, T ]

×B(0, 1), we have

‖v‖Lq([0,T ],Lr(Rn)) . ‖v‖L2([0,T ],H1/2(Rn)) + ‖(i∂t +A)u‖L2([0,T ],H−1/2(Rn)), (4.1)

whenever the right hand side is finite.

This section is organized as follows. First we reduce the estimates (1.9) to a dyadic one as in

[23]. Then we decompose time interval into small pieces and obtain the pointwise estimates in

a unit tube through the exact parametrix (see Lemma 4.1). Reuniting the piecewise estimates,

one can obtain the inequality (1.9). The key point of the proof is Lemma 4.2, which is firstly

obtained in [15]. But for the sake of completeness, we would like to repeat the proof. The last

part is devoted to the proof of Theorem 1.1 and Theorem 1.2. It is worthwhile to mention that

in this section we would always assume ajk ∈ C1([0, T ], C2(Rn)) and T = 1.

Before going into the details of the proof, we would like to introduce a parametrix con-

structed in [15].

Lemma 4.1 Assume that the symbol a(t, y, η) satisfies is measurable in t and satisfies the

bounds

|∂α
y ∂

β
η a(t, y, η)| ≤ cαβ , |α| + |β| ≥ 2, (4.2)

and (xt, ξt) is the Hamilton flow for Dt + a, that is,





dxt

dt
= aξ(t, x

t, ξt), x(0) = x,

dξt

dt
= −ax(t, xt, ξt), ξ(0) = ξ.
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The kernel K of the fundamental solution operator Dt + a(t, y,D) can be represented in the

form

K(t, y1, y) =

∫

Rn×Rn

eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)e
iξ(x−y)e−(x−y)2/2dxdξ, (4.3)

where the function G satisfies

|(xt − y1)
γ∂α

x ∂
β
y1
∂ν

ξG(t, x, y1, ξ)| ≤ Cαβγν , (4.4)

and the real phase function Ψ is defined by

dΨ

dt
= −a+ ξtaξ(t, y

t, ηt), Ψ(0) = 0.

Given the dyadic decomposition as in Section 2, we define the partial summation operator

U√
λ =

∑

µ≤
√

λ

Sµ and the new coefficients aλ
jk = U√

λajk. Since aλ
jk is a small perturbation of

ajk, the non-degenerate condition still holds for these new coefficients. And the derivatives of

aλ
jk satisfy

|∂α
y a

λ
jk(t, y)| ≤ C(α)λ(|α|−2)/2, |α| ≥ 2,

|∂α
y a

λ
jk(t, y)| ≤ C(α), 0 ≤ |α| ≤ 2.

Choose another smooth cutoff function s̃(η) which is equal to 1 on the support of s(η). Then

(4.1) is reduced to the dyadic one

‖Sλu‖Lq([0,1],Lr(Rn)) . λ1/2‖Sλu‖L2([0,1]×Rn) + λ−1/2‖PλSλu‖L2([0,1]×Rn) (4.5)

with Pλ = Dt +
n∑

j,k=1

aλ
jk∂j∂kS̃λ(D) = Dt + aλ(t, y,D). A useful observation is that it suffices

to prove (4.5) for λ≫ 1.

For fixed frequency λ, we decompose time interval into small pieces, that is,

[0, 1] =

λ⋃

k=1

[k − 1

λ
,
k

λ

]
=

λ⋃

k=1

Ik.

We will concentrate our attention in one small time interval Ik. Without loss of generality, one

can take I1 for example. Suppose u(t, y) solves the equation




Dtu+ aλ(t, y,D)u = 0, 0 ≤ t ≤ 1

λ
,

u(0) = u0,
(4.6)

and define the solution operator U(t, s)u(s, y) = u(t, y). By L2 conservation, it is easy to know

that U(t, s) is L2 isometrics. Set

t̃ = λt, ỹ =
√
λy, ũ(t̃, ỹ) = u

( t̃
λ
,
ỹ√
λ

)
,
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and the symbol ã(t̃, ỹ, η) = λ−1aλ(
et
λ ,

ey√
λ
,
√
λη). Then ũ solves the equation






Detũ+ ã(t̃, ỹ, D)ũ = 0, t̃ ∈ [0, 1],

ũ(0) = u0

( ỹ√
λ

)
.

(4.7)

Define also the solution operator Ũ( · , · ) as before. Then the following pointwise estimates

hold.

Lemma 4.2 There exists a constant 0 ≤ M < 1 which is independent of λ, such that for

any |t− s| ≤M ,

‖Ũ(t, s)ψ√
λ(D)u(s, y)‖L∞(Rn

y ) .
1

|t− s|n/2
‖u(s, y)‖L1(Rn

y ), (4.8)

where ψ(η) is chosen to be a smooth cutoff function

ψ(η) =






1,
1

2
≤ |η| ≤ 2,

0, |η| ≤ 1

4
or |η| ≥ 4,

and s̃(η) ≡ 1 on the support of ψ(η).

Proof It suffices to prove it at s = 0. Let u(t, y) = Ũ(t)ψ√
λ(D)u0(y). We would prove

‖u(t0, y)‖L∞(Rn
y ) .

1

t
n/2
0

‖u0(y)‖L1(Rn
y ) (4.9)

at any time t0 ∈ [0,M ] (M to be determined). For short range time 0 ≤ t0 ≤ 1
λ ,

‖u(t0, y)‖L∞(Rn
y ) =

∥∥∥ψ√
λ(D)u0(y) +

∫ t0

0

ã(τ, y,D)u(τ)dτ
∥∥∥

L∞(Rn
y )

. λn/2‖u0(y)‖L1(Rn
y ) + λ

∫ t0

0

‖u(τ, y)‖L∞(Rn
y )dτ.

By Gronwall’s inequality, one has

‖Ũ(t0)ψ√
λ(D)u0(y)‖L∞(Rn

y ) . λn/2‖u0(y)‖L1(Rn
y ) .

1

t
n/2
0

‖u0(y)‖L1(Rn
y ).

Then we need to prove (4.9) for long range 1
λ ≤ t0 ≤M . Set

t1 =
t

t0
, y1 =

y√
t0
, η1 =

√
t0η,

u1(t1, y1) = u(t0t1, y1
√
t0), a1(t1, y1, η1) = t0ã

(
t0t1, y1

√
t0,

η1√
t0

)
.

Then u1 solves the equation

{
Dt1u1 + a1(t1, y1, D)u1 = 0,

u1(0) = ψ√
λt0

(D)u0(y1
√
t0) , v(y1).
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The estimate (4.9) is reduced to

‖u1(1, y1)‖L∞ . ‖v(y1)‖L1 . (4.10)

It is easy to verify

|∂α
y1
∂β

η1
a1(t1, y1, η1)| ≤ C(α, β), ∀ |α| + |β| ≥ 2.

Then one has

u1(t, y1) =

∫
eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)e

iξ(x−y)e−(x−y)2/2ψ√
λt0

(D)v(y)dydxdξ

=

∫
eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)

∫
e−(η−ξ)2/2e−ixηψ

( η√
λt0

)
v̂(η)dηdxdξ

=

∫

Rn
x

∫

W

eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)

∫
e−(η−ξ)2/2e−ixηψ

( η√
λt0

)
v̂(η)dηdξdx

+

∫

Rn
x

∫

R
n
ξ \W

eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)

∫
e−(η−ξ)2/2e−ixηψ

( η√
λt0

)
v̂(η)dηdξdx

= I(t) + II(t)

with W = {ξ ∈ Rn |
√

λt0
8 ≤ |ξ| ≤ 8

√
λt0 }.

Since ψ(η) is supported on { 1
4 ≤ |η| ≤ 8},

‖II(1)‖L∞(Rn
y1

)

≤
∥∥∥
∫

Rn
x

∫

R
n
ξ \W

|G(1, x, y1, ξ)|
∫
e−(η−ξ)2/2ψ

( η√
λt0

)
|v̂(η)|dηdξdx

∥∥∥
L∞(Rn

y1
)

≤ e−cλt0
∥∥∥
∫

Rn
x

∫

R
n
ξ \W

(1 + |x1 − y1|)−N

∫
e−(η−ξ)2/4ψ

( η√
λt0

)
|v̂(η)|dηdξdx

∥∥∥
L∞(Rn

y1
)
.

Claim 4.1 There exists a finite θ = θ(n) > 0 such that

∫
(1 + |x1 − y1|)−Ndx . (1 + λt0)

θ.

Proof of Claim 4.1 Since

x1 = x+

∫ 1

0

ẋτdτ = x+

∫ 1

0

∂ξa1(x
τ , ξτ )dτ,

one has

(1 + |xt − y|)−N =
(
1 +

∣∣∣x+

∫ 1

0

∂ξa1(x
τ , ξτ )dτ − y1

∣∣∣
)−N

≤ (1 + |x− y1|)−N
(
1 +

∣∣∣
∫ 1

0

∂ξa1(x
τ , ξτ )dτ

∣∣∣
)N

≤ (1 + |x− y1|)−N (1 + λt0)
N/2. (4.11)

To obtain the last inequality of (4.11), it suffices to notice that a1(x, ξ) is compactly supported

in ξ. This ends the proof of this claim.
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Combining Claim 4.1, one has

‖II(1)‖L∞(Rn
y1

) . e−cλ2

λθ

∫

Rn

ψ
( η√

λt0

)
|v̂(η)|dη . e−cλ2

λθ+n/2‖v̂(η)‖L∞

. e−cλ2

λθ+n/2‖v(y1)‖L1 ≤ c‖v(y1)‖L1 ,

where c is independent of λ.

We rewrite I(t) as

I(t) =

∫

W

eiξt(y1−xt)eiΨ(t,x,ξ)G(t, x, y1, ξ)e
iξ(x−y)e−(x−y)2/2ψ√

λt0
(D)v(y)dydxdξ

=

∫

Rn
y

K(t, y1, y)ψ√
λt0

(D)v(y)dy.

The inequality (4.10) would follow from

‖K(1, y1, y)‖L∞(Rn
y1

) . 1. (4.12)

Claim 4.2
∫

W

(1 + |x1 − y1|)−Ndξ . 1.

Proof of Claim 4.2 We need to study the dependence of xt on ξ. Set X(t) = ∂xt

∂ξ and

Ξ(t) = ∂ξt

∂ξ . Then X(t) and Ξ(t) satisfy the ODE system





∂X(t)

∂t
= ∂ξxa1X + ∂ξξa1Ξ, X(0) = 0,

∂Ξ(t)

∂t
= −∂xxa1X − ∂ξxa1Ξ, Ξ(0) = I.

(4.13)

Noticing ∂ξxa1 = t0
λ a

λ
x,ξ

(
t0t1
λ , x

√
t0√
λ
, ξ

√
λ√

t0

)
, ∂xxa1 =

t20
λ2 a

λ
x,x

(
t0t1
λ , y

√
t0√
λ
, ξ

√
λ√

t0

)
and (∂ξξa1)n×n =

(
aλ

ξ,ξ

(
t0t1
λ , y

√
t0√
λ
, ξ

√
λ√

t0

))
= (aλ

jk) in the region W , one gets

∂X(t)

∂t
= ∂ξξa1(t) +O(t0) = ∂ξξa1(0) +

∫ t

0

∂

∂τ
∂ξξa1(τ)dτ +O(t0) = ∂ξξa1(0) +O(t0).

Then we have

X(1) = ∂ξξa1(0) +O(t0).

Noticing non-degenerate condition, we can choose a positive constant M such that for each

|t0| < M

Det(X(1)) ≥ C > 0, ∀ ξ ∈ B.

It is important to notice that the constants M and C are independent of λ. Hence we obtain

∫

W

(1 + |x1 − y1|)−Ndξ =

∫

W

(1 + |x1 − y1|)−N 1

Det(X(1))
dx1 . 1.
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Now we return to the proof of (4.12),

‖K(1, y1, y)‖L∞(Rn
y1

) =
∥∥∥
∫

W

∫

Rn
x

eiξ1(y1−x1)eiΨ(t,x,ξ)G(1, x, y1, ξ)e
iξ(x−y)e−(x−y)2/2dxdξ

∥∥∥
L∞(Rn

y1
)

.

∫

Rn
x

∫

W

(1 + |x1 − y1|)−Ne−(x−y)2/2dξdx

. 1.

This completes the proof of Lemma 4.2.

Rescaling in time and space, one obtains the following corollary.

Corollary 4.1 There exits a constant M > 0 which is independent of λ, such that for each

|t− s| ≤ M
λ

‖U(t, s)ψλ(D)u(s, y)‖L∞(Rn
y ) .

1

|t− s|n/2
‖u(s, y)‖L1(Rn

y ).

Based on the corollary above, one can get piecewise dispersive estimates in I1 as follows.

We first have the trivial formulae

Dtu+Aλu = Pλu, 0 ≤ t ≤ 1

λ
(4.14)

and

Dtψλ(D)u +Aλψλ(D)u = ψλ(D)Pλu+ [Aλ, ψλ(D)]u.

Then

ψλ(D)u(t) =

∫ t

0

U(t, s){ψλ(D)Pλu+ [Aλ, ψλ(D)]u}ds, 0 ≤ t ≤ 1

λ
.

More precisely, the time interval should be [0, M
λ ], but this makes no difference. Replacing u

by Sλu and noticing that ψλ(D)Sλu = Sλu, we have

Sλu(t) =

∫ t

0

U(t, s){ψλ(D)PλSλu+ [Aλ, ψλ(D)]Sλu}ds

=

∫ t

0

ψλ(D)U(t, s)ψλ(D)PλSλuds+

∫ t

0

ψλ(D)U(t, s)[Aλ, ψλ(D)]Sλuds.

By Corollary 4.1 and Keel-Tao’s argument in [14], one has the following estimates

‖Sλu‖Lq([0,1/λ],Lr) . ‖PλSλu‖L1([0,1/λ],L2) + ‖[Aλ, ψλ(D)]Sλu‖L1([0,1/λ],L2). (4.15)

Then the following piecewise estimates holds:

‖Sλu‖L2([0,−1/λ],L2n/(n−2)) . λ1/2‖PλSλu‖L2([0,1/λ],L2) + λ1/2‖Sλu‖L2([0,1/λ],L2).

Similarly, one has

‖Sλu‖L2(Ik,L2n/(n−2)) . λ1/2‖PλSλu‖L2(Ik,L2) + λ−1/2‖Sλu‖L2(Ik,L2). (4.16)
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To end the proof of Theorem 4.1, it suffices to square the both sides of (4.16) and sum on k.

Next we will conclude the proof of Strichartz inequalities (1.4) and (1.6) based on the local

smoothing estimates, Theorem 3.1 and Theorem 4.1.

Proof of Theorem 1.1 Choose a cutoff function χ(x) ∈ C∞
c (Rn), i.e.,

χ(x) =

{
1, |x| ≤ 1,

0, |x| > 2.

We split u into two parts

u = χ(x)u + (1 − χ(x))u = u1 + u2. (4.17)

Then u2 solves the equation





i∂tu2 +A0u2 = [χ,A0]u− (1 − χ(x))

n∑
j=1

bj∂ju− (1 − χ(x))cu = f1,

u2(0) = (1 − χ(x))u0.

(4.18)

Correspondingly, u1 satisfies the equation




i∂tu1 +Au1 = −[χ,A0]u+ χ(x)

n∑
j=1

bj∂ju+ χ(x)cu = f2,

u1(0) = χ(x)u0.

(4.19)

By local smoothing estimate (see Theorem 2.1), one has

‖[χ,A0]u‖L2([0,T ],H−1/2(Rn)) . ‖u0‖L2(Rn), (4.20)

‖bj∂ju‖L2([0,T ],H−1/2(Rn)) . ‖κ(|x|)J1/2u‖L2(Rn+1) . ‖u0‖L2(Rn). (4.21)

Combining Theorem 3.1, Theorem 4.1 and inequalities (4.20), (4.21), we have

‖u‖Lq([0,T ],Lr(Rn)) ≤ ‖u1‖Lq([0,T ],Lr(Rn)) + ‖u2‖Lq([0,T ],Lr(Rn))

. ‖χu‖L2(H1/2) + ‖[χ,A0]u‖L2(H−1/2) +

n∑

j=1

‖bj∂ju‖L2(H−1/2)

. ‖u0‖L2(Rn).

This concludes the proof of Theorem 1.1.
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