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1 Introduction and Main Results

In this paper, we shall provide a proof of Strichartz estimates for Schrodinger equations
with non-degenerate and non-smooth coefficients. Such kinds of equations are of their physical
background, such as the Zakharov-Schulman system in water wave problems (see [30]) and
Ishimori equations in ferromagnetism (see [12]).

We first introduce some assumptions. Consider the initial value problem

10yu — Z 0j(a;k(t, x)0ku) + Z b;(t, x)0ju+ c(t, x)u =0,
Jk=1 j=1 (1.1)
u(0) = uy,
with the following hypotheses

(H1) a;i(t,z) € CHR,C3(R™)), aji, = €0, outside R x B(0,1) with ¢; € {1,—1} and
B(0,1) = {x : |z| < 1}. And the matrix (a;x)nxn is real, symmetric and non-degenerate, that

is, there exists a constant v > 0, such that
n n 1
Vt,z,6) e RxR"xR", —f¢] < |(ajn)€] < vIg]-

(H2) b;(t,2) € L®(R, CLR™)); c(t, z) € L®(R, CL(R™)).

Then there exists a constant ¢y such that
bj| < cor(lz]), Vji=1,---,n

with x(|z|) = (1 + |z]?)~N/? for some integer N > n.
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Let P denote the Schrédinger operator

P=id +L=id— ZaajkaHZba +e (1.2)
7,k=1
and a(t, z,§) be the principal symbol of operator A = — % 0;a;10k, i.e.,
jik=1

a(t,z,§) = Za]ktxﬁjfk

J.k=1

Denote by H, the Hamiltonian vector field
Ha Z 8570‘87"7 - Tyaafj)'
7j=1

Then the Hamilton flow (xp, &) is defined as

dzn _
dh

d
% = —ax(t,zn, &), &(0)=¢,

ag(t,wn,&n),  2(0) =,
(1.3)

where h is the natural parameter along the Hamilton flow. We know that the solution to system
(1.3) exists in the interval (—d,d) with § = d(¢, z, &).

The last hypothesis is as follows (see also [13]).
(H3) Non-trapping condition: For each (¢,z,£) € R x R™ x R™"\{0}, and for each u > 0,
there exists hg with 0 < hg < § such that

|J3h0 (t, €z, §)| > .

Remark 1.1 In view of the flatness of a;x (¢, z) outside the region R x B(0, 1), it suffices
to assume p = 1 for bounded t € R.

The main results of this paper are as follows.

Theorem 1.1 Let (H1)—~(H3) be fulfilled. Then for any T > 0, the unique solution of (1.1)

satisfies

HUHL‘I([O,T],LT'(]R“)) S C(T, (ij, v, TL)”U()”Lz(]Rn) (14)

for any admissible pair (q,r), such that

2 1 1
—:n(———), 2<g<+o00 forn >3,
q 2 r
2 1 1
- = (———), 2<q<+o00 forn=2.
q 2 r

Remark 1.2 (a) The regularity of ajx (¢, z) can be relaxed to C'(R,C?%¢(R")) , Ve > 0.
(b) The pair (2, %5 n=2) js usually called endpoint, and the other pairs are called non-endpoints.
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Now we consider the following inhomogeneous equation with homogeneous initial data

n

i0ru — Z 8j (ajk (t,2)0ku) + Z b; (t, x)aju + c(t, z)u = F(t,z), (1.5)
k=1 J=1 :

u(0) =0,

under the same hypotheses (H1)—(H3). By Duhamel’s formula, the solution to (1.5) has the
form

@F(t,x):/o Ul(t,s)F(s,x)ds

with U(t) being the solution operator to equation (1.1). We have the following theorem.

Theorem 1.2 Let (q,7), (p,7) be any non-endpoint admissible pairs and F(t,z) € L* (R,
LY (R™)) with % + % = 1. Then for any T > 0,

| F(t, @)l La(o,11,Lr@®n)) < CT, aji, vs WIIFE )| Lo 0,77, (R7)- (1.6)

The inequalities (1.4) and (1.6) are known as Strichartz estimates, which are essential tools in
studying nonlinear evolution equations, such as, Schrodinger equation, wave equation and KdV
equation. For free Schrodinger equation, it was first given by Strichartz [22] when ¢ =7 = %
and then extended to non-endpoint case by Ginibre and Velo [9]. For inhomogeneous case, it
was obtained by Yajima [29] and Cazenave-Weissler [3]. The endpoint estimates were recently
proved by Keel and Tao [14]. When the operator A is an elliptic one with variable coefficients,
Staffilani and Tataru [23] proved (1.4) for compactly supported perturbation of flat Laplacian.
Similar results were also got by Burg-Gérard-Tzvetkov [1], Hassel-Tao-Wunsch [10], Robbiano-
Zuily [18] and Salort [19]. When A is just non-degenerated, to the author’s knowledge, it is
still open.

We now would like to have a quick review of the well-posedness and local smoothing for
Schrodinger operator with variable smooth coefficients. For the elliptic case, they were proved by
Doi [7, 8] and Craig-Kappeler-Strauss [6] (see also the references therein). Very recently, Kenig-
Ponce-Rolvung-Vega proved local solutions for non-degenerate case in [13], but no Strichartz
inequality is given. In present paper, to be self-contained, we shall provide a short proof for
local smoothing effect through the similar method of Doi and Kenig-Ponce-Rolvung-Vega.

Next we will give the outline of our work. In Section 2, local smoothing estimates (see
Theorem 2.1) for equation (1.1) is proved. In Section 3, a constant coefficient dispersive estimate
is obtained. More precisely, if f(¢,x) is spatially compactly supported for each ¢, then the

solution to the equation

iatw — Zajajjw = f(t,.]?),
j=1
w(0) = wy

(1.7)

satisfies the following estimate

lwll Lago,r),-®n)) S llwollLz@ny + 1 fll 20,17, 5-172®n))- (1.8)
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We give a new proof to (1.8) for non-endpoint case, which is based on smoothing effect of
homogeneous Schrodinger equation with constant coefficients. In Section 4, the following a

priori estimate

lvllLaqo,,m@®ny) S W0llL2o,m, 51720 Yy + (80 + AVl L2(j0, 17, 1-1/2(R7) (1.9)

is proved for any v supported in [0,7] x B(0,1), which is the main result of our work. The
inequality (1.9) was first established for elliptic case in [23]. The main approach there is to
construct the approximate parametrix through FBI transform. For non-degenerated case, there
is something different. A more careful analysis is necessary. More precisely, one needs to
illustrate that the gradient flows, which start from the characteristic surface K = {(¢, 7, z, &) |
p(t,7,2,&) = 0}, can uniformly reach the surface Kq = {(t,7,,&) | p(t,7,2,£) = d} for some
constant d # 0. Once this is proved, the estimates are reduced to the same settings in [23].
However in this paper, as proposed by Tataru, we would like to obtain the dispersive estimates
through the parametrix constructed in [15]. The details will be illustrated in this section. At
last we conclude the proof of Strichartz inequalities (1.4) and (1.6) with the aid of the estimates
(1.8) and (1.9).

2 Well-Posedness and Local Smoothing

We first introduce the notation of pseudo-differential operator with nonregular symbols (see

[25]) and a key lemma. Given a dyadic decomposition
€
1= Z S(X) => 59,
A=2i jEZ A
we define Syu = sx(D)u.
One can easily verify the following property
Proposition 2.1 If ue€ C"(R"), then
sup \"||Shu|l L= < +o0. (2.1)
A

The following definition of pseudo-differential operator with nonregular symbol and the
Sobolev boundedness theorem are due to Taylor [25].

We define the Zygmund space CI(R™) composed of u such that (2.1) is finite, namely

l[ullcr = sup A" ||Sxul| g < +oo.
A

Then CT = C"ifr e RY\ZT, CI ¢ C" ifr € Z*. Then one can introduce the pseudo-differential
operator with nonregular symbol.
Definition 2.1 Set r € (0,+00), we say p(x,&) € CLS™(R™) provided for each multiindex
aeZl
|1Dgp(z, )| < cal€)™ 1, (2.2)
IDEP(+, )llcr®n) < cal&)™ 1 (2.3)

with (€) = (1+[¢*)"/2.
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We define also the pseudo-differential operator ¥, with the symbol p(x,&) by

1

Voule) = o [l (e

Then the following boundedness result in Sobolev spaces holds (see [25, p. 52])

Lemma 2.1 If p(x,&) € CLS™, then
19, ulli- < ellulzerr

provided —r < s < r.
Another key lemma is concerning with non-trapping condition.

Lemma 2.2 Suppose (H1)~(H3) hold and r(|z|) = (1 + |z|>)~N/2 (N > n). Then there
exists a constant ¢ > 0 and a real classical symbol q(t,z,€) € C*([0,T],S°), such that

Huq > 6(|z)|gl — ¢, V(tz, &) €]0,T] x R" x R™. (2.4)

The elliptic version of above lemma is originally due to Doi [8]. And Kenig-Ponce-Rolvung-
Vega proved Lemma 2.2 for non-degenerate case in [13]. In the present paper, one can give a
simple proof as in [23].

Now we turn to the proof of local smoothing estimate. Consider the inhomogeneous equation

10 — g 0;(a;k(t, )0ku) + g b;(t,z)0ju + c(t, x)u = h(t, x),
J,k=1 j=1
u(0) = up.

(1.1)

Then we have the following a priori estimate.

Lemma 2.3 Assume that (H1)-(H3). Then there exists a constant ¢ depending on n, v,
aji, and T, such that for all uw € C([0,T],S(R™)) the following estimates holds

T
. o @+ [ [ 1Pl
T
< el + [ N0+ Lyulade). .
T
(2) OzltlgTHu(t)HLz < c(||u(0)||Lz +/0 (i, + L)u||L2dt> (2.6)

with J = (I — A)Y/2,

Proof Setting h(t,z) = Oyu — iLu, one obtains
Owu = iLu + h(x,t). (2.7)
By Lemma 2.2, there exists a real symbol p = (n + 1)cog € C1([0,T],S%) and ¢ > 0, such that

H,p > (n+ 1)cor(|z|)|€] — c. (2.8)
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Set k(t,x,&) = €P, E(t,x,f) = e P and correspondingly K (t,z,D) = Uy, IN((t,x,D) = Us.

Observe that k(t,z, &), k(t,z,&) € C([0,T],S°). We also define
N(w)? = [[Kul[Zs + [lul2,. (2.9)

In what follows, we shall show that N(-) is an equivalent norm of the standard L? norm.
Noticing that

KK=I+V,, rneS", (2.10)
one has
lullzz = | KKu— Wy ullge $ [ Kullz2 + [|ul| 1. (2.11)

The last part of (2.11) comes from the Sobolev Boundedness of classical pseudo-differential
operators, which verifies the equivalence.

Next we will set up the inequalities in Lemma 2.3 for N(u). First, we have

d

d d
o N(u)]* = aumniz + Enun’il =1+1L (2.12)

For II, one has

d
Enunil = 2Re (J '0yu, J'u) = 2Re (iJ 'Lu+ Jh, T u)
< 2Re (i[J 71 Alu, J 7 ) + N(u)? + (J7 h, T 1),

~

where [-, -] is the commutator. Noticing [J~!, A] € C2S°, we can employ the Lemma 2.1. Tt
follows that

Cluly £ N(w? + N (2.13)
For I, one has
%HKuH?LQ = 2Re (0y(K (t,x, D)u), K (t,z, D)u)
= 2Re(Vp, 1 u, Ku) + 2Re (KOpu, Ku) < ¢; N(u)? + 2Re (K (iLu + h), Ku)
< ¢2N(u)? + 2Re (i[K, Alu, Ku) + 2Re (z zn: b;0; Ku, Ku) + N(h)N(u)
=1
= coN(u)? + 2Re (i[ K, AJu, Ku) + 2Re (\IJZKU,, Ku)+ N(h)N(u) (2.14)

with b= 3 b;¢;. Notice that
j=1

i[K, Alu=T,+ 0,

with 7 € C1S? and ¢ € C251, i.e.,

q:{k,a}:Z&gjkﬁwja—awjkagja. (2.15)

Jj=1
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Since
{k,a} = —{a,pte” = —{a, p}k,
we can get
i[K, Al = =Wy K+, (2.16)

with ro € C1S%. By (2.8) and the hypothesis (H2),
Hop+ 3 b6 > (n+ Deor(leDlg] — ¢ — ncon(lal)€] = slallé] . (27)
j=1

Then one can apply sharp Garding inequality to W, ,)45), that is,

— (¥ ({apy+o Ku, Ku) < —(k(|z|)J Ku, Ku) + eN(u)?
—cgllm(|2]) 2 TV2 K72 + N (u)?
—callm ()2 2ul|7a + eN (u)?, (2.18)

IN

IN

By (2.14), (2.16) and (2.18), we have

d
T IKulfz < —calla(la) 2T 2ul| T + esN (),

Then
%N(U)Q < —eallm(jaD) 2T u] e + coN (u)® + N(R)N (u). (2.19)
To obtain (2.5), one finds that
d
N+ Is(lz)) /2 2ulg2 S N(w)® + N(R)N (u). (2.20)

Integrating it with respect to ¢ from 0 to T yields (2.5).
Since (2.19) also implies
d 2 2
V(W S N(w)” + N(R)N(u),
one easily gets the estimates (2.6) by Gronwall inequality. This ends the proof.
Remark 2.1 The regularity of ajx can be relaxed to C*¢. To convince this, it suffices to
notice that ro € C2SY is enough in (2.16).

Without difficulties, we can obtain the following theorem through Lemma 2.3 and the ar-

gument in [11, Chapter 23, §1].

Theorem 2.1 Assume that (H1)—(H3) hold. Then
(1) If h(t,x) € L*([0,T], L>(R™)), then (1.1)" has a unique solution u € C([0,T], L*(R™))
satisfying

T
sup [ult)lzz < T, asivm) (Juoll gz + [ Bt 2)]1odt).
0<t<T 0
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(2) If h(t,x) € L*([0,T), L*(R™)), then (1.1)" has a unique solution u € C([0,T], L*(R™))
satisfying

T T
swp [ult)|Ba+ [ [ 172 ulet)Pelfel)dode < (T agvom)(Jualls + [ it [-de)
0<t<T 0 Jrn 0
with J = (I — A)Y/2,
3 The Estimates of Constant Coefficients Equation

Theorem 3.1 The unique solution w to equation (1.7) salisfies the estimate

”wHL‘I([O,T],LT(R")) N ”wO”L?(]R“) + ||f||L2([O,T],H*1/2(]R“))' (3.1)

The inequality was originally established in [23]. Tt is essential that f(¢,x) is spatially
compactly supported. Here we give a new proof to the non-endpoint case. For endpoint case,
the construction is the same as the elliptic one in [23] and we will not repeat it. We first

introduce a technical lemma of Christ and Kiselev in [5].

Lemma 3.1 Let X andY be Banach spaces and assume that k(t, s) is a continuous function
valued in B(X,Y). Suppose that —oo < a < b < 400, and set

b t
TH() = / k(t, ) f(s)ds, W () = / k(t, ) (s)ds.
Assume that 1 < p < g < +oo and

\T fllLaco, vy < Cllfllze(o,m,x)-

Then

91-2(1/p=1/q)
”Wf”Lq([O,T],Y) < mCHfHLP([O,TLX)'

We now prove Theorem 3.1. Without loss of generality, we assume wg = 0. Set Ay =
n

€;0j;. Then w can be expressed in the form

Jj=1

t
w(t, x) :/ e t=3)40 £ (s 2)ds.
0

From Lemma 3.1, it suffices to prove

H/T ei(t_s)Aof(s, a:)ds‘

0

Sl zzo, 10,1172 (Rn)) - (3.2)

La([0,1],L7(R™))

By Strichartz estimates for flat Schrodinger operator,
T o) T
i(t—s)Ag itAo —1sAp
e s, T ds’ = |le / e s, T ds‘
H/ fs) La([0,1],L"(R™)) 0 fls.)

0
T .
< H/ e*”Aof(s,x)ds’
0

La([0,1],L(R™))

. (3.3)
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Then the estimate (3.2) is reduced to

T .
H/ e_lSAOf(s,x)ds‘
0

Lok S llz2qo, ), 1172 mny) - (3.4)

Since f(t, -) is compactly supported, the inequality (3.4) can be rewritten as

L2(Rn) 5 ”f”LQ([OvTLH_l/Q(]R"))a (34)/

H/OT e A0y (2) (s, x)ds’

where x2(z) is a smooth cutoff function.
By the duality argument, this is equivalent to

—itA

Ix2(x)e™ (@) L2 (0,17, 11727 Y) S 9]l L2(®n) s

which is nothing else but the local smoothing estimates. This concludes our proof.

4 The Localized Variable Coefficients Estimates

Theorem 4.1 Assume that (H1)—(H3) are fulfilled. Then for any v(t,x) supported in [0, T
xB(0,1), we have

vl zao, 7y, r@®ny) S N0l L20, 1), 172 @ny) + 1180 + A)ull L2 (0,77, 5172 (R 5 (4.1)

whenever the right hand side is finite.

This section is organized as follows. First we reduce the estimates (1.9) to a dyadic one as in
[23]. Then we decompose time interval into small pieces and obtain the pointwise estimates in
a unit tube through the exact parametrix (see Lemma 4.1). Reuniting the piecewise estimates,
one can obtain the inequality (1.9). The key point of the proof is Lemma 4.2, which is firstly
obtained in [15]. But for the sake of completeness, we would like to repeat the proof. The last
part is devoted to the proof of Theorem 1.1 and Theorem 1.2. It is worthwhile to mention that
in this section we would always assume a;, € C1([0,7],C?*(R")) and T = 1.

Before going into the details of the proof, we would like to introduce a parametrix con-
structed in [15].

Lemma 4.1 Assume that the symbol a(t,y,n) satisfies is measurable in t and satisfies the

bounds
0507 a(t, y,n)| < cap, ol +16] =2, (4.2)

and (zt,€%) is the Hamilton flow for Dy + a, that is,

dxt
E :af(t7xt7£t)7 iE(O) =,
&’

dt = _a?{:(taxtvgt)a 5(0) = f
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The kernel K of the fundamental solution operator Dy + a(t,y, D) can be represented in the

form
K(t,y,y) = / eiét(yl—mt)eiw(t7m7§)g(t, T, Y1, f)eiﬁ(m—y)e—(m—y)z/dedf’ (4.3)
R7l XR’V‘L

where the function G satisfies

(" = 41)70505, 0L G(t, 2,91, €)| < Capo, (4.4)

T Y1

and the real phase function V is defined by

dv
o = ¢ + Eag(t,y',n"), W(0)=0.
Given the dyadic decomposition as in Section 2, we define the partial summation operator
Uyx = > Su and the new coefficients a?‘k = U xajk. Since a?‘k is a small perturbation of
u<VX

ajx, the non-degenerate condition still holds for these new coefficients. And the derivatives of

a;‘k satisfy

|0y Jk( y)| < C(a))\(\al—2)/27 la| > 2,
|8y _]k‘( )| S C(O{), 0 S |Oé| S 2.

Choose another smooth cutoff function $(n) which is equal to 1 on the support of s(n). Then
(4.1) is reduced to the dyadic one

1Sxul| pago.1], £ @ny) S A2 Sxull 2o,y xrm) + A2 PaSaull n2jo,1)xmm) (4.5)

with Py = D; + %:1 aj%kajaki(p) = Dy +a*(t,y, D). A useful observation is that it suffices
j7 v —
to prove (4.5) for A > 1.

For fixed frequency A, we decompose time interval into small pieces, that is,

ng[-l’q U

We will concentrate our attention in one small time interval I;,. Without loss of generality, one

can take I for example. Suppose u(t,y) solves the equation

Dyu+a*(t,y,D)u=0, 0<t<
u(0) = uyp,

>

(4.6)

and define the solution operator U(t, s)u(s,y) = u(t,y). By L? conservation, it is easy to know
that U(t,s) is L? isometrics. Set

t=X, 7=V, ut,y) = U<§ai)a
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and the symbol a(t,7,71) = )Fla>‘(§, %, V). Then % solves the equation
Dy +a(t,y, D)u =0, te[0,1],

4(0) = uo(i). .7

Define also the solution operator U (-, -) as before. Then the following pointwise estimates
hold.

Lemma 4.2 There exists a constant 0 < M < 1 which is independent of X\, such that for
any |t — s| < M,

~ 1
1U(t, )¢5 (D)uls, )l oo py < mHU(&Q)HLl(R;), (4.8)

where ¥(n) is chosen to be a smooth cutoff function

—

v(n) = 1
0, |77| < Z or |77| >4,
and s5(n) = 1 on the support of ¥ (n).
Proof It suffices to prove it at s = 0. Let u(t,y) = ﬁ(t)d}ﬁ(D)U()(y). We would prove
1
|uto, Y)ll Lo vy < WHUO(Q)HU(R;;) (4.9)
0

at any time to € [0, M] (M to be determined). For short range time 0 < to < %,

to
Jutto:)l<x) = [ 5(Duotw) + [ lr. . Dyutrya|

to
SN2 uow)llprceg) + X [ (e, )z dr
0
By Gronwall’s inequality, one has

~ " 1
U (t0)t /5 (D)o ()| oo gy S X [luo )|y S 7 luo (W)l L2 ry)-
0

Then we need to prove (4.9) for long range % <tog <M. Set

t Y
t1 = —, = —, = t ,
1 t U1 \/t_o m Vvion
ui(t1,y1) = ultotr, yivio), ai(ti,y1,m) = 7505(750751791\/7507 —\2—)
0

Then u; solves the equation

Dyur + ai(t,y1, D)uy = 0,
u1(0) = 9 /5 (D)uo(y1v/fo) £ v(y1).
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The estimate (4.9) is reduced to

Jur (L y1)llzee S lo(y)llr (4.10)

It is easy to verify

|aa 86 al(tlyylan1)| SC(OZ,ﬂ)7 V|OZ|+|6| > 2.

Yyi-m

Then one has
ur(t, ) = / =N VTGt 3y, €)' VeI 2y o (DYo(y) dyddg

_/eigt(ylfmt)ei\ll(t,w,f)G(t’x’yl’é‘)/ef(nff)2/267ia:nw< Zt )ﬁ(ﬁ)dﬂdffdf
Vv Alo

:/ / eiit(yl—mt)eill/(t7m7§)G(t7x7yhf)/e—(n—£)2/2e—mn¢( U )ﬁ(n)dndfdx
nJw

VAt

ot .t . (. . 'I] e
_|_/ / & =) V(LT (¢ g gy € /e (n=€)?2/2, i@y, 5(n)dndédzs
2 JRpW (e p8) (MAL‘O) ()

= 1(t) + I1(t)

with W = {¢ e R" | 2L < [¢] < 8y/Nfp }.
Since 1(n) is supported on {% <|n| <8},

ML) | poe mp )

SH// G(1,z,y1, /e‘“"@2/2 T Ve dddxH
 Jop I8 v( g omldndsdal

_ —(n— n ~
14|zt —y N/e =9%/4y (Y 15(n)|d dfdxH .
[ L 1 = () emlandeas|_

Claim 4.1 There exists a finite § = 0(n) > 0 such that

< e—C)\tg

/(1 + |2t — y1|)_Ndx <1+ )\to)e.
Proof of Claim 4.1 Since
1 1
2t =x +/ iTdr = x +/ Oeay (27, &7)drT,
0 0

one has

(et =)™ = (1+]o+ [ ECR )
<@l -V (14 ]/01 Ocon a7, €7)dr| )
< (L4 ]z =y )N+ M) V2. (4.11)

To obtain the last inequality of (4.11), it suffices to notice that a;(x, ) is compactly supported
in £&. This ends the proof of this claim.
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Combining Claim 4.1, one has

—cA\? U -~ —c\? n -~
IOl qag) S €0 [ ()Pl S e A2 )

_ 2
SN o) < ellu(y)ln,

where ¢ is independent of A.
We rewrite I(¢) as

0= /W S DR OG 1, yy, €V e T 2y o (Do(y)dydad
= RnK(t,yl,y)w\/m(l?)v(y)dy-
The inequality (4.10) would follow from
IE (L y1, y)llpe @y ) S L. (4.12)
Claim 4.2

/ (14 ]a! — ) Nde < 1.
w

Proof of Claim 4.2 We need to study the dependence of 2t on &. Set X (t) = 88'—? and
=(t) = %—gg. Then X (¢) and Z(t) satisfy the ODE system

0X (t
65 ) Ogoar X + Ogear B, X(0) =0,
o (4.13)
2
Noticing dg,a1 = ©a) (88, IQ/;_O’%)’ Ouzar = 33a) (Lo, y¢‘/§_07 %OX) and (Oge@1 )nxn =

(aég(%, y\/‘/;\_“, %OX ) = (a;‘k) in the region W, one gets

aX (1)

ot = 855a1(t) + O(tg) = 8550,1(0) + / gaggal(T)dT + O(tg) = 8550,1(0) + O(to).

0 87'
Then we have
X(l) = 8&&&1(0) + O(to).

Noticing non-degenerate condition, we can choose a positive constant M such that for each
|t0| <M

Det(X(1)) >C >0, V¢eB.

It is important to notice that the constants M and C are independent of A\. Hence we obtain

1
N 1 —N
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Now we return to the proof of (4.12),

f,/ /(1+|x —y|)” No—(z=y) 12dedx
nJw

[ K (1, 91, )||L°°(R“

Y1 oo n
Leo(Ry,)

This completes the proof of Lemma 4.2.
Rescaling in time and space, one obtains the following corollary.
Corollary 4.1 There ezits a constant M > 0 which is independent of X, such that for each

M
It —s| <3

1
[U(t, s)¥a(D)u(s, y)l Lo mn) < mﬂu(s,y)ﬂumw.

Based on the corollary above, one can get piecewise dispersive estimates in I; as follows.
We first have the trivial formulae

Dou+ AMu= P, 0<t< (4.14)

> =

and
Dypx(D)u+ AMpx(D)u = a (D) Pau+ [A*, 15 (D)]u.
Then

Pa(D)u(t) = /Ot U(t, s){wa(D)Pau + [A*, Ya(D)]ulds, 0<t<

More precisely, the time interval should be [0, %], but this makes no difference. Replacing u
by Syu and noticing that i (D)S\u = Syu, we have

SAU /Ut S {1/»\( )P)\S)\u—i—[ ,1/))\( )]qu}ds

= [ DS + [ oa (D)4 va(D) v
By Corollary 4.1 and Keel-Tao’s argument in [14], one has the following estimates
ISxull Loqo,/a,r) S 1PASxull L o.1/a1,L2) + 1[AY, 9A(D)]Sxull L1 (j0,1/5).22)- (4.15)
Then the following piecewise estimates holds:
1Sxull L2 (0, -1 /7). L2n /-2y S A2 PASxull Laqpo,0, 12y + A 2{S3ull 20,1/, £2)-
Similarly, one has

1S3t 2z, pans -2y S A2 PaSxull 2z, L2y + A2 [Saull L2 12)- (4.16)
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To end the proof of Theorem 4.1, it suffices to square the both sides of (4.16) and sum on k.
Next we will conclude the proof of Strichartz inequalities (1.4) and (1.6) based on the local

smoothing estimates, Theorem 3.1 and Theorem 4.1.

Proof of Theorem 1.1 Choose a cutoff function x(z) € C°(R"), i.e.,

(x) _ 17 |x| S ]-7
=30, 2] > 2.

We split u into two parts
u=x(@u+ (1 —x()u=u +us. (4.17)

Then wus solves the equation

i0¢us + Aoua = [x, AoJu — (1 — x(x)) anl bj0ju — (1 — x(z))eu = fi,
5=

(4.18)
uz(0) = (1 — x(x))uo.
Correspondingly, u; satisfies the equation
idpur + Awy = ~[x, AoJu + x(2) 3 b;ju + x(w)eu = fo,
j=1 (4.19)
u1(0) = x(x)uo.
By local smoothing estimate (see Theorem 2.1), one has
1Dx¢: Aolull 2o, 17, H-1/2mmy) S llwollL2@n), (4.20)
165050 Lo, 11, =172 @)y S K220l L2 (nsry S lluoll L2 @n)- (4.21)

Combining Theorem 3.1, Theorem 4.1 and inequalities (4.20), (4.21), we have
[ullzago,r),rnmy) < llutllzaqor),r@ny) + lluzllLago,m, r@n))
S lxull oz + 1 Aolull L2172y + Z 10;05ull 2172
j=1

S lluoll 2 @ny-

This concludes the proof of Theorem 1.1.
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