首页 | 官方网站   微博 | 高级检索  
     


Towards the design of novel boron‐ and nitrogen‐substituted ammonia‐borane and bifunctional arene ruthenium catalysts for hydrogen storage
Authors:Sateesh Bandaru  Niall J English  Andrew D Phillips  JMD MacElroy
Affiliation:1. The SFI Strategic Research Cluster in Solar Energy Conversion, University College Dublin, Belfield, Dublin 4, Ireland;2. School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland;3. Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland;4. School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
Abstract:Electronic‐structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia‐borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β‐diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia‐borane optimized for chemical hydrogen storage and allowing for low‐energy dehydrogenation. The interaction of ammonia‐borane, and related substituted ammonia‐boranes, with a bifunctional η6‐arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride‐proton transfer from the substituted ammonia‐borane to the catalyst undergoes a barrier‐less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N‐difluoro ammonia‐borane and N‐phenyl ammonia‐borane systems resulted in negative activation energy barriers. However, these types of ammonia‐boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N‐difluoro ammonia‐borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free‐energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru‐complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate‐limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H‐H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.
Keywords:ammonia‐borane  density functional theory  dehydrogenation  ruthenium  bifunctional  catalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号