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GLOBAL DYNAMICS OF A GENERAL
BRUCELLOSIS MODEL WITH DISCRETE

DELAY

Qiang Hou 1,2,† and Feng Zhang1

Abstract For the prevention and control of brucellosis, it is important to
investigate the mechanism of brucellosis transmission. Based on the charac-
teristics of the spread of brucellosis, a susceptible-exposed-infectious-brucella
(SEIB) delay dynamic model is proposed with the general incidence, elim-
ination rate and shedding rate of pathogen. Under biologically motivated
assumptions, it shows the uniqueness of the endemic equilibrium, and inves-
tigates the global asymptotically stability of the disease-free equilibrium and
the endemic equilibrium. The results suggest that the global stability of equi-
libria depends entirely on the basic reproduction number R0 and time delay
is harmless for the stability of equilibria. Finally, some specific examples and
numerical simulations are used to illustrate the utilization of research results
and reveal the biological significance of hypothesis (H7), which implies that
the dynamics of brucellosis transmission depend largely on the development
of the prevention and control strategies.

Keywords Brucellosis, indirect transmission, discrete delay, global stability,
Lyapunov function.
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1. Introduction

Brucellosis, is one of the worlds major infectious bacterial disease, can be transmit-
ted to other animals (such as sheep, cattle, pig) with exposure to infected animals
or via ingestion of pathogens in the environment. Although brucellosis is well con-
trolled in some developed countries, such as bovine brucellosis in Australia, it is still
one of the common clinical diseases in the world [23]. Particularly, brucellosis not
only brings serious economic losses, but also represents a significant public health
burden on developing countries and continues receiving worldwide attention.

Statistical methods have been widely applied to the quantitative study of bru-
cellosis transmission, the research results on the American Yellowstone National
Park and the Middle East countries are worthy of attention (see [9, 17, 28, 31]).
Some dynamic models have been proposed to study the complex dynamics of bru-
cellosis transmission [2,11,22,25,27,30]. In particular, many models have been used

†the corresponding author. Email address: houqiang200207@163.com(Q. Hou)
1School of Mathematics and Statistics, Southwest University, No.2 Tiansheng
Road, Chongqing 400715, China

2Department of Mathematics, North University of China, No.3 Xueyuan Road,
Taiyuan 030051, Shanxi Province, China

∗The authors were supported by TianYuan Special Foundation of the Nation-
al Natural Science Foundation of China (No.11426208), Youth Foundation
of Shanxi Province(No.2015021018, No.2013021002-1), the National Youth
Science Foundation (No.11501528).



228 Q. Hou & F. Zhang

to predict the spread of brucellosis and assess brucellosis prevention measures, for
example, Zinsstag et al. [32] studied a dynamic model of animal (sheep and cattle)-
to-human brucellosis transmission in terms of the characteristics and the data of
Mongolia. Roy et al. [24] proposed an approach of network control to model and op-
timally control brucellosis. However, most of these studies focused on analyzing the
spread of brucellosis with the direct transmission (contact transmission). In recent
years, some researchers proposed mathematical models with indirect transmission
for brucellosis epidemic in animals and the transmission from sheep to humans.
Al̈nseba et al. [1] proposed an SIC dynamic model for brucellosis transmission in
ovine through direct and indirect ways. Li et al. [21] established a deterministic
model to investigate the transmission dynamics of brucellosis in Hinggan League
of Inner Mongolia of China. Hou et al. [12] studied a dynamic model of sheep-to-
human brucellosis with indirect transmission in terms of the characteristics and the
data of Inner Mongolia of China. Recently, based on common characteristics of
brucellosis and tuberculosis transmission, Hou et al. [13] formulated a general dy-
namic model with indirect transmission, and the global stability results of equilibria
are obtained. Indirect transmission mode has been used to investigate brucellosis
transmission in these literatures, but details of the transmission cycle of many an-
imal brucellosis remain unclear, taking bovine brucellosis as an example, it is not
sure whether animals have an infectivity in the latent period. On the other hand,
the latent period is expressed in terms of an extra class which is defined as E. Its
relevance in context of epidemiology may cause some doubts, this approach implies
the assumption of the exponentially distributed time delay. In reality, it often ap-
pears that an assumption of a constant delay is more reasonable, which leads to a
delay model.

Epidemic models with time delays have been extensively studied, and the sta-
bility analysis of the models is one of the main contents. The global stability of
some delayed epidemic models are analyzed by means of an iteration technique and
Lyapunov functional technique, such as the models by Xu and Ma, Huang et al.,
Enatsu et al., Fang et al., Li et al., Lai and Zou [8,10,14,16,18,29]. In recent years,
the global stability of the endemic equilibrium for multi-group models with time
delays has been investigated with a graph-theoretical approach to the method of
global Lyapunov functions [5, 7, 19, 20, 26]. However, indirect transmission mode is
not reflected in these studies, and there is no research by now studying the global
dynamics of brucellosis transmission models with indirect transmission and time
delay. In this paper, we propose a general susceptible-exposed-infectious-brucella
(SEIB) dynamic model with time delay and indirect transmission for the spread of
brucellosis. Under biologically motivated assumptions, using Lyapunov functional
technique, we show that the global dynamics is completely determined by R0: if
R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, and the dis-
ease dies out; if R0 > 1, the disease persists and a unique endemic equilibrium is
globally asymptotically stable.

This work is structured as follows. In the next Section, we first formulate our
model with discrete delay, and show the uniqueness of the endemic equilibrium. In
Section 3, the global stability of equilibria of system is established. In Section 4,
some examples and numerical simulations are given. A brief summary is given in
Section 5.
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2. The model and equilibria

Based on the mechanisms of brucellosis transmission, animal population is clas-
sified into three compartments: the susceptible compartment S(t), the exposed
compartment E(t) and the infectious compartment I(t). On the other hand, in-
fectious animal can shed brucella into the environment through abortion or animal
secretions, which can survive for several weeks, or even months in the feces or con-
taminated environment under suitable conditions. Brucella can be harvested by
susceptible individuals that become infected individuals depending on the ingested
dose. Therefore, an infected animal generates infection in two ways: the direct and
indirect modes of transmission. Let B(t) denote pathogens in the environment.
According to the interpretation of introduction, we ignore the infection of exposed
animal and assume the latent period span is τ , then the transfer rate from the ex-
posed class into the infected class is given by e−µτn(S(t−τ)(f(I(t−τ))+g(B(t−τ))).
Therefore, we obtain the following compartmental model:

dS

dt
= A− n(S)(f(I) + g(B))− µS,

dE

dt
= n(S)(f(I) + g(B))− µE − e−µτn(S(t− τ))(f(I(t− τ)) + g(B(t− τ))),

dI

dt
= e−µτn(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))− φ(I),

dB

dt
= h(I)− θ(B). (2.1)

Here, A is the recruitment rate of the animal population, and µ is natural elim-
ination rate. n(S) is a contact function. The elimination rate of the infected
animals, including the disease induced death rate, is denoted by φ(I). We de-
fine h(I) as the pathogen shedding rate of infectious animals. θ(B) represents
the disinfection rate and decaying rate of pathogen in the environment. τ ≥
0 represents a time delay describing the latent period of the disease, the term
e−µτn(S(t − τ)(f(I(t − τ)) + g(B(t − τ))) represents the individuals surviving in
the incubation period and becoming infective at time t. The initial conditions for
system (2.1) take the following form:

S(x) = ϕ1(x), E(x) = ϕ2(x), I(x) = ϕ3(x), B(x) = ϕ4(x),

ϕi(x) ≥ 0, x ∈ [−τ, 0], ϕi(0) > 0, ϕi ∈ C+, i = 1, 2, 3, 4. (2.2)

Here, C denotes the Banach space C([−τ, 0],ℜ) of continuous functions mapping
the interval [−τ, 0] into ℜ equipped with the sup-norm ∥ϕ∥ = supx∈[−τ,0] |ϕ(x)| for
ϕ ∈ C. The nonnegative cone of C is defined as C+ = C([−τ, 0],ℜ+).

For continuity of the initial conditions, we need to further require

E(0) =

∫ 0

−τ

n(ϕ1(x))(f(ϕ3(x)) + g(ϕ4(x)))e
µxdx. (2.3)

The mechanism of animal brucellosis transmission is identical, but the incidence
rate, elimination rate and decaying rate of pathogen is dependent on animal breeding
environment and resources, and the specific forms of these functions are unclear.
To make biological sense for our model, we assume the functions n, f, g, φ, h and θ
are sufficiently smooth, and satisfy the following hypotheses:
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(H1) n(0) = 0, and n(S) > 0, n′(S) > 0 for S > 0.
(H2) f(0) = g(0) = 0, and f(I), g(B) > 0 for I,B > 0.
(H3) f

′(I) ≥ 0, g′(B) ≥ 0 for B, I ≥ 0.
(H4) h(0) = 0, h(I) > 0, h′(I) > 0 for I > 0.
(H5) φ(0) = 0, and φ′(I) > 0 for I ≥ 0; there exists constant µ1 > 0 such that

φ(I) ≥ µ1I.
(H6) θ(0) = 0, and θ′(B) > 0 for B ≥ 0.

Based on biological considerations, we are interested in solutions that are non-
negative and bounded. In fact, adding the first three equations of (2.1) yields that

(S + E + I)′ =A− µ(S + E)− φ(I)

≤A− µ(S + E)− µ1I

≤A− µ0(S + E + I),

where µ0 = min{µ, µ1}, then it follows that

lim
t→+∞

sup(S + E + I) ≤ A

µ0
, lim

t→+∞
supB ≤ θ−1(h(

A

µ0
)).

Therefore, the set

Ω = {(S,E, I,B) ∈ R+
4 : ∥S + E + I∥ ≤ A

µ0
, ∥B∥ ≤ θ−1(h(

A

µ0
))}

is the positively invariant set for system (2.1).
The assumption (H1) represents a common contact function, such as Sq

1+MSq

with q > 0 and M ≥ 0. The assumption (H2) indicates that incidence rate is
greater than or equal to 0. The two inequalities in assumption (H3) implies that
increased infection and pathogens in the environment lead to higher incidence rate.
The assumption (H4) states that the pathogen concentration increases with the
growing number of the infectious individuals. The assumption (H5) implies that
the more the infected animals are, the more infected animals to be eliminated will
be. The assumption (H6) shows that the disinfection and decaying rate of pathogen
is monotonically increasing.

Since n(0) = φ(0) = h(0) = θ(0) = 0, it is easy to see that the system (2.1)
admits a unique disease-free equilibrium P0 = (S0, 0, 0, 0). We define the basic
reproduction number R0 of our model by

R0 =
e−µτn(S0)fI(0)

φI(0)
+

e−µτn(S0)gB(0)hI(0)

φI(0)θB(0)
.

In order to analyze the uniqueness of the endemic equilibrium, and prove the
global asymptotic stability of the equilibria, some additional conditions are imposed
on the functional coefficients. Suppose the followings:
(H7)

f
φ ,

g
θ and h

φ are nonincreasing on (0,+∞).

The endemic equilibrium P∗(S
∗, E∗, I∗, B∗) of system (2.1) is determined by

equations:

A− µS∗ = n(S∗)(f(I∗) + g(B∗)),

µE∗ = (1− e−µτ )n(S∗)(f(I∗) + g(B∗)),

e−µτn(S∗)(f(I∗) + g(B∗)) = φ(I∗),

h(I∗) = θ(B∗).
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It is equivalent to solving the following equation:

A− µS∗ = n(S∗)(f(I∗) + g(B∗)),

n(S∗)(f(I∗) + g(B∗)) = eµτφ(I∗),

h(I∗) = θ(B∗). (2.4)

From the last equation in (2.4), we can obtain

B∗ = θ−1(h(I∗)) , H(I∗). (2.5)

Substituting (2.5) into the first two equations in (2.4), we get

m(S∗) , A− µS∗ = n(S∗)(f(I∗) + g(H(I∗))),

Φ(I∗) , eµτφ(I∗) = n(S∗)(f(I∗) + g(H(I∗))).

Let us define

F1(S, I) , m(S)− n(S)(f(I) + g(H(I))),

F2(S, I) , n(S)(f(I) + g(H(I)))− Φ(I).

Since F1(S, I) is strictly decreasing for S > 0 and F1(0, I) · F1(S0, I) < 0 for
I > 0, the equation F1(S, I) = 0 can be uniquely solved with S as a function of I
for all I. That is to say, there is a function S = ϕ1(I) which satisfies

m(ϕ1(I))

n(ϕ1(I))
= f(I) + g(H(I)) , G(I).

Since m
n is strictly decreasing and G is strictly increasing, it follows that ϕ1 is

strictly decreasing. Note that deriving from (2.4) and (2.5), limI→ A
µ0

ϕ1(I) = 0.

We also note that F2(S, I) is strictly increasing for S > 0 and F2(0, I) < 0 for all
I, while it is not necessarily true that F2(S0, I) > 0. So the same approach would
not be used to solve the equation F2(S, I) = 0. Since we are searching for a unique
endemic equilibrium and for a uniquely corresponding I∗, we only need the local
solvability of the equation F2(S, I) = 0 on a certain condition.

We assume for the moment that the equation F2(S, I) = 0 may also be uniquely
solved with S as a function of I (locally for I). That is, there is a function S = ϕ2(I)
which satisfies

n(ϕ2(I)) =
Φ(I)

G(I)
.

Since f
φ ,

g
θ and h

φ are nonincreasing, so we obtain

(
g(H(I))

φ(I)
)′ =

gB(B) 1
θB(B)hI(I)φ(I)− φI(I)g(B)

φ2(I)

=
gB(B)hI(I)φ(I)− θB(B)φI(I)g(B)

θB(B)φ2(I)

≤0,
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where

hI(I)φ(I)

φI(I)
− θ(B) =

hI(I)φ(I)− φI(I)h(I)

φI(I)
≤ 0,

which is equivalent to hI(I)φ(I)
φI(I)

≤ θ(B). Therefore, the function Φ(I)
G(I) is increasing

on (0,∞), and the function n is strictly increasing, then ϕ2 is also increasing.
Since ϕ1 is strictly decreasing, ϕ2 is increasing and limI→ A

µ0

ϕ1(I) = 0, the

curves defined by S = ϕ1(I) and S = ϕ2(I) have a common point (S∗, I∗) with
S∗ > 0, I∗ > 0 on condition that if and only if ϕ1(0) > ϕ2(0) or n(ϕ1(0)) >

n(ϕ2(0)). Since ϕ1(0) = S0 and n(ϕ2(0)) = limI→0
Φ(I)
G(I) , the existence condition is

n(S0) > limI→0
Φ(I)
G(I) . Using L’Hospital rule and the basic reproduction number of

the system (2.1), this condition can be rewritten as R0 > 1.
We have shown that if the equation F2(S, I) = 0 is solvable with S as a function

of I, then the necessary and sufficient condition for the existence of positive (S∗, I∗)
is that R0 > 1. In this case, we have

F2(S, I) = Φ(I)(
n(S)G(I)

Φ(I)
− 1)

and F2(S0, I) is positive for I in a vicinity of 0 if R0 > 1. It follows that the equation
F2(S, I) is solvable with S as a function of I (locally for I ), that is, we have shown
that the existence of positive (S∗, I∗) is equivalent to the valid condition R0 > 1.
So system (2.1) have a unique positive solutions P∗ = (S∗, E∗, I∗, B∗).

According to the above discussion, we have the following results:

Theorem 2.1. Assume that conditions (H1) − (H7) hold. Then there is a unique
positive endemic equilibrium P∗ = (S∗, E∗, I∗, B∗) of system (2.1) if and only if
R0 > 1.

Remark. We note that conditions (H7) (combined with R0 > 1) are sufficient
for the existence of the endemic equilibrium rather than necessary. For instance,
if one assumes that the removal rate φ(I) of the infected animals is influenced by
the resource which is used to monitor and cull infected animals, such as φ(I) =
µI + cI

a+I with constants µ, c, a > 0, c represents the maximal supply of resources
for monitoring and culling per unit time and a is half-saturation constant, measuring
the efficiency of the resource supply in the sense. The disease-free equilibrium may
coexist with multiple positive endemic equilibria when R0 < 1.

3. Stability of equilibria

In this section, we study the global stability of disease-free equilibrium and the
endemic equilibrium of system (2.1). It is important for us to understand the
extinction and persistence of animal brucellosis.

3.1. Stability of the disease-free equilibrium

In this subsection, by constructing a Lyapunov function, we establish the global
asymptotic stability of the disease-free equilibrium of system (2.1). Noting that the
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variable E(t) does not appear in the first, the third and the fourth equations of
system (2.1), we first consider the following subsystem:

dS

dt
= A− n(S)(f(I) + g(B))− µS,

dI

dt
= e−µτn(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))− φ(I),

dB

dt
= h(I)− θ(B). (3.1)

Lemma 3.1. Assume that conditions (H1) − (H7) are satisfied. If R0 ≤ 1, the
disease-free equilibrium E0 = (S0, 0, 0) of system (3.1) is globally asymptotically
stable.

Proof. Since the function f
φ ,

g
θ and h

φ are nonincreasing, we have

n(S)f(I)

φ(I)eµτ
≤ lim

I→0+

n(S0)f(I)

φ(I)eµτ
=

n(S0)fI(0)

φI(0)eµτ
, b1,

n(S)g(B)

θ(B)eµτ
≤ lim

B→0+

n(S0)g(B)

θ(B)eµτ
=

n(S0)gB(0)

θB(0)eµτ
, b2,

h(I)

φ(I)
≤ lim

I→0+

h(I)

φ(I)
=

hI(0)

φI(0)
.

Define

J =

(
1 0

− hI(0)
φI(0)

1

)
, (a1, a2) = (b1, b2)J

−1.

Thus, a1 = R0 ≤ 1, we define the Lyapunov function

L =R0(

∫ S

S0

n(x)− n(S0)

n(x)
dx+ eµτI) + a2e

µτB

+R0

∫ t

t−τ

(n(S(x))f(I(x)) + n(S(x))g(B(x)))dx.

Then the derivative of L along positive solutions of system (3.1) is

dL

dt
=− µR0(S0 − S)(

n(S0)

n(S)
− 1)

+R0(
n(S0)f(I)

φ(I)eµτ
,
n(S0)g(B)

θ(B)eµτ
)(φ(I)eµτ , θ(B)eµτ )τ

− (R0, a2)

(
1 0

− h(I)
φ(I) 1

)
(φ(I)eµτ , θ(B)eµτ )τ

≤R0(
n(S0)fI(0)

φI(0)eµτ
,
n(S0)gB(0)

θB(0)eµτ
)(φ(I)eµτ , θ(B)eµτ )τ

− (R0, a2)

(
1 0

− hI(0)
φI(0)

1

)
(φ(I)eµτ , θ(B)eµτ )τ

=(R0 − 1)(b1, b2)(φ(I)e
µτ , θ(B)eµτ )τ

≤0.
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Therefore, the equality dL
dt = 0 holds if and only if S = S0 and either R0 = 1 or

I = 0. Since E0 is the only invariant set of system (3.1) in {(S, I,B) : dL
dt = 0}, the

disease-free equilibrium E0 is globally asymptotically stable by LaSalle’s Invariance
Principle.

Theorem 3.1. Assume that conditions (H1) − (H7) are satisfied. If R0 ≤ 1, the
disease-free equilibrium P0 = (S0, 0, 0, 0) of system (2.1) is globally asymptotically
stable.

3.2. Stability of the endemic equilibrium

In this subsection, we analyze the stability of the endemic equilibrium. Similar to
the above discussion, we first investigate the global asymptotic stability of system
(3.1).

Lemma 3.2. Assume that conditions (H1) − (H7) are satisfied. If R0 > 1, the
endemic equilibrium E∗ = (S∗, I∗, B∗) of system (3.1) is globally asymptotically
stable.

Proof. Define

L1 =

∫ S

S∗

n(x)− n(S∗)

n(x)
dx+ eµτ

∫ I

I∗

φ(x)− φ(I∗)

φ(x)
dx.

Finding the time derivative of L1 along the positive solutions of system (3.1) gives

dL1

dt
=(1− n(S∗)

n(S)
)
dS

dt
+ eµτ (1− φ(I∗)

φ(I)
)
dI

dt

=(1− n(S∗)

n(S)
)(n(S∗)(f(I∗) + g(B∗))− n(S)(f(I) + g(B))− µ(S − S∗))

+ (1− φ(I∗)

φ(I)
)(n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))− φ(I)eµτ )

=− µ(S − S∗)(1− n(S∗)

n(S)
)− eµτφ(I) + eµτφ(I∗)

− n(S)(f(I) + g(B)) + n(S∗)(f(I) + g(B))

− n(S∗)

n(S)
n(S∗)(f(I∗) + g(B∗)) + n(S∗)(f(I∗) + g(B∗))

+ n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))

− φ(I∗)

φ(I)
n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))

=− µ(S − S∗)(1− n(S∗)

n(S)
)− n(S)(f(I) + g(B))

+ n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))

− φ(I∗)

φ(I)
n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))

+ n(S∗)f(I∗)(2 +
f(I)

f(I∗)
− n(S∗)

n(S)
− φ(I)

φ(I∗)
− n(S)f(I)φ(I∗)

n(S∗)f(I∗)φ(I)
)

+ n(S∗)g(B∗)(2 +
g(B)

g(B∗)
− n(S∗)

n(S)
− φ(I)

φ(I∗)
− n(S)g(B)φ(I∗)

n(S∗)g(B∗)φ(I)
)
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+
φ(I∗)

φ(I)
n(S)(f(I) + g(B)).

Define

L2 =n(S∗)f(I∗)

∫ t

t−τ

(
n(S(x))f(I(x))

n(S∗)f(I∗)
− 1− ln

n(S(x))f(I(x))

n(S∗)f(I∗)
)dx

+ n(S∗)g(B∗)

∫ t

t−τ

(
n(S(x))g(B(x))

n(S∗)g(B∗)
− 1− ln

n(S(x))g(B(x))

n(S∗)g(B∗)
)dx.

A direct calculation shows that

dL2

dt
=n(S)(f(I) + g(B))− n(S(t− τ))(f(I(t− τ))

+ g(B(t− τ))) + n(S∗)f(I∗) ln
n(S(t− τ))f(I(t− τ))

n(S)f(I)

+ n(S∗)g(B∗) ln
n(S(t− τ))g(B(t− τ))

n(S)g(B)
.

Define

L3 =
n(S∗)g(B∗)

h(I∗)

∫ B

B∗

θ(x)− θ(B∗)

θ(x)
dx.

By simple calculation, we obtain

dL3

dt
=(1− θ(B∗)

θ(B)
)
dB

dt
= n(S∗)g(B∗)(

h(I)

h(I∗)
− θ(B)

θ(B∗)
− h(I)θ(B∗)

h(I∗)θ(B)
+ 1).

For system (3.1), we consider the following Lyapunov function:

L = L1 + L2 + L3.

Calculating the derivative of L along positive solutions of system(3.1), it follows
that

dL

dt
=
dL1

dt
+

dL2

dt
+

dL3

dt

=− µ(S − S∗)(1− n(S∗)

n(S)
)− φ(I∗)

φ(I)
n(S(t− τ))(f(I(t− τ)) + g(B(t− τ)))

+ n(S∗)f(I∗)(2 +
f(I)

f(I∗)
− n(S∗)

n(S)
− φ(I)

φ(I∗)
− n(S)f(I)φ(I∗)

n(S∗)f(I∗)φ(I)
)

+ n(S∗)g(B∗)(2 +
g(B)

g(B∗)
− n(S∗)

n(S)
− φ(I)

φ(I∗)
− n(S)g(B)φ(I∗)

n(S∗)g(B∗)φ(I)
)

+ n(S∗)g(B∗)(
h(I)

h(I∗)
− θ(B)

θ(B∗)
− h(I)θ(B∗)

h(I∗)θ(B)
+ 1)

+ n(S∗)f(I∗) ln
n(S(t− τ))f(I(t− τ))

n(S)f(I)

+ n(S∗)g(B∗) ln
n(S(t− τ))g(B(t− τ))

n(S)g(B)
+

φ(I∗)

φ(I)
n(S)(f(I) + g(B)). (3.2)
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We consider the function M(x) = 1 − x + lnx, which is nonpositive for x > 0
and M(x) = 0 if and only if x = 1. Eq. (3.2) is equivalent to

dL

dt
=− µ(S − S∗)(1− n(S∗)

n(S)
)

+ n(S∗)f(I∗)(
f(I)

f(I∗)
− 1)(1− f(I∗)φ(I)

f(I)φ(I∗)
)

+ n(S∗)f(I∗)(M(
f(I∗)φ(I)

f(I)φ(I∗)
) +M(

n(S∗)

n(S)
))

+ n(S∗)g(B∗)(
g(B)

g(B∗)
− 1)(1− g(B∗)θ(B)

g(B)θ(B∗)
)

+ n(S∗)g(B∗)(
h(I)

h(I∗)
− 1)(1− h(I∗)φ(I)

h(I)φ(I∗)
)

+ n(S∗)g(B∗)(M(
n(S∗)

n(S)
) +M(

h(I)θ(B∗)

h(I∗)θ(B)
))

+ n(S∗)g(B∗)(M(
h(I∗)φ(I)

h(I)φ(I∗)
) +M(

g(B∗)θ(B)

g(B)θ(B∗)
))

+ n(S∗)f(I∗)M(
φ(I∗)n(S(t− τ))f(I(t− τ))

n(S∗)f(I∗)φ(I)
)

+ n(S∗)g(B∗)M(
φ(I∗)n(S(t− τ))g(B(t− τ))

n(S∗)g(B∗)φ(I)
). (3.3)

By assumption (A7), we have the following results:

(
f(I)

f(I∗)
− 1)(1− f(I∗)φ(I)

f(I)φ(I∗)
)

=
φ(I)

f(I)f(I∗)
(f(I)− f(I∗))(

f(I)

φ(I)
− f(I∗)

φ(I∗)
)

≤0,

(
g(B)

g(B∗)
− 1)(1− g(B∗)θ(B)

g(B)θ(B∗)
) ≤ 0

and

(
h(I)

h(I∗)
− 1)(1− h(I∗)φ(I)

h(I)φ(I∗)
) ≤ 0. (3.4)

It follows from (3.3) and (3.4) that

dL

dt
=

dL1

dt
+

dL2

dt
+

dL3

dt
≤ 0.

The equality dL
dt = 0 implies that n(S∗)

n(S) = 1, f(I)
f(I∗) = 1 and g(B)

g(B∗) = 1. That is,

the equality dL
dt = 0 holds only for S = S∗, I = I∗, B = B∗, which means that E∗

is the maximum invariant set of system (3.1) in the set {dL
dt = 0}, and then the

endemic equilibrium E∗ is globally asymptotically stable.

Theorem 3.2. Assume that conditions (H1) − (H7) are satisfied. If R0 > 1, the
endemic equilibrium P∗ = (S∗, E∗, I∗, B∗) of system (2.1) is globally asymptotically
stable.
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Proof. It follows from the second equation of system (2.1) that

E(t) =

∫ t

t−τ

n(S(x))(f(I(x)) + g(B(x)))e−µ(t−x)dx. (3.5)

From Lemma 3.2 and Eq.(3.5), we get

lim
t→+∞

E(t) = lim
t→+∞

∫ t

t−τ

n(S(x))(f(I(x)) + g(B(x)))e−µ(t−x)dx

= lim
t→+∞

∫ t

t−τ
n(S(x))(f(I(x)) + g(B(x)))eµxdx

eµt

= lim
t→+∞

1

µ
n(S)(f(I) + g(B))(1− e−µτ )

=E∗.

Therefore, if R0 > 1, P∗ of system (2.1) is globally asymptotically stable.

4. Several specific examples and numerical simula-
tion

To illustrate the usefulness of the results, we consider the following the nonlinear
system:

dS

dt
=A− Sf(I)− Sg(B)− µS,

dE

dt
=Sf(I) + Sg(B)− µE − e−µτS(t− τ)(f(I(t− τ)) + g(B(t− τ))),

dI

dt
=e−µτS(t− τ)(f(I(t− τ)) + g(B(t− τ)))− (c+ µ)I,

dB

dt
=kIq − dB, (4.1)

where A,µ, τ, k, d and c > 0, 0 < q ≤ 1, n(S) = S, φ(I) = (c + µ)I, h(I) = kIq,
θ(B) = dB, and the functions g(B) and f(I) are strictly monotonously increasing.
(A7) can be satisfied by the following nonlinear incidence functions:

Xp
i

1 + TiX
p
i

, i = 1, 2,

where X1 = I,X2 = B, 0 < p ≤ 1, Ti ≥ 0.
If g(B) = λB

1+TB or η(1−e−αB) and f(I) = k ln(1+ λI
k ) with constants λ, η, k, α >

0, T ≥ 0 [3, 4, 6, 15], the assumption (H7) holds. In these cases, if R0 ≤ 1, the
disease-free equilibrium is globally asymptotically stable, and system (4.1) has a
unique endemic equilibrium, which is also globally asymptotically stable if R0 > 1.

For φ(I) = µI + cI
a+I , f(I) = βI, g(B) = λB and q = 1. It is easy to see

that system (4.1) has a disease-free equilibrium (Aµ , 0, 0, 0). We drive the basic
reproduction number by

R11
0 =

Aae−µτ (dβ + kλ)

dµ(aµ+ c)
.
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To determine the endemic equilibrium, we solve nonlinear equations given by

A = βSI + λSB + µS,

e−µτS(βI + λB) = µI +
cI

a+ I
,

kI = dB. (4.2)

So we have
R2I

2 + (R1 −R11
0 )I + a(1−R11

0 ) = 0,

where R2 = a(dβ+λk)
d(aµ+c) , R1 = a(dβ+λK

dµ + µ
aµ+c ), ∆ = (R1 − R11

0 )2 − 4aR2(1− R11
0 ).

Therefore, system (4.1) has two endemic equilibria when R1 < R11
0 < 1 and ∆ > 0,

and there is a unique endemic equilibrium when R11
0 > 1. The above analysis

suggests that system (2.1) may go through backward bifurcation if the assumption
(H7) is not satisfied, which implies that the disease-free equilibrium of system (4.1)
is not globally asymptotically stable. Biologically speaking, even if R0 is reduced
and kept under unity, disease can not be ultimately eliminated.

To better understand the results, we make n(S) = S, f(I) = βI, g(B) = λB,
h(I) = kI and θ(B) = dB, then system (2.1) can be rewritten as

dS

dt
=A− βSI − λSB − µS,

dE

dt
=βSI + λSB − µE − e−µτS(t− τ)(βI(t− τ) + λB(t− τ)),

dI

dt
=e−µτS(t− τ)(βI(t− τ) + λB(t− τ))− φ(I),

dB

dt
=kI − dB. (4.3)

Considering the following parameter values and initial values:

A = 210, β = 0.025, λ = 0.005, µ = 0.1, k = 2, d = 4

and
S(0) = 200, E(0) = 10, I(0) = 30, B(0) = 100.

When φ(I) = (µ+c)I, it is easy to see that the endemic equilibrium of system (4.3)
is globally asymptotically stable and the persistent scale of the disease is reduced
with the increase of time delay τ from Fig.1(a). For φ(I) = µI + cI

a+I , system (4.3)
presents periodic oscillation behavior from Fig.1(b), which shows that the endemic
equilibrium of system (4.3) is not globally asymptotically stable, and implies that
system (4.3) experiences bifurcation.

5. Conclusions

In this paper, we formulated a general SEIB dynamic model for animal brucellosis
transmission with the general incidence, shedding rate of pathogen, removal rate
and a time delay to describe the fixed latency period of animal brucellosis. Un-
der the biologically motivated assumptions, the disease-free equilibrium of system
(2.1) shows globally asymptotically stable if R0 ≤ 1, which means that the extinc-
tion of infectious diseases is independent of initial sizes of the populations and the
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Figure 1. Fixed all other parameters except time delay τ . (a) Simulation of the number
of infected individuals on variable τ (1, 3, 6 and 9) with c = 0.02. (b) Simulation of the
number of infected individuals on variable τ (0, 3 and 6) with c = 240 and a = 20.

disease will be eliminated; and if R0 > 1, system (2.1) admits a unique endemic
equilibrium which is also globally asymptotically stable, implying that the disease
always remains endemic and persists at a unique endemic equilibrium, no matter
how small the size of the initial infection is. These results suggest that time delay is
harmless for the stability of equilibria of system (2.1). Furthermore, if f

φ ,
g
θ and h

φ

are increasing, system (2.1) may have other dynamical features such as cycle oscil-
lations according to the examples in Section 4. In other words, the persistent level
of the disease is very low in a certain time period, but it does not imply that the
disease will die out. In addition, as is shown in Fig.1(b), the impact of time delay
on the bifurcation of system (2.1) is still unclear. Therefore, the development of the
prevention and control strategies has significant effects on the spread of brucellosis,
but our knowledge of the dynamics of brucellosis transmission remains incomplete.
We leave other dynamical properties for further research.
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