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EFFECTS OF THE KILLING RATE ON
GLOBAL BIFURCATION IN AN

ONCOLYTIC-VIRUS SYSTEM WITH
TUMORS∗

Wenshuang Suo1 and Yunfeng Jia1,†

Abstract Oncologists and virologist are quite concerned about many kinds
of issues related to tumor-virus dynamics in different virus models. Since the
virus invasive behavior emerges from combined effects of tumor cell prolifera-
tion, migration and cell-microenvironment interactions, it has been recognized
as a complex process and usually simulated by nonlinear differential systems.
In this paper, a nonlinear differential model for tumor-virus dynamics is in-
vestigated mathematically. We first give a priori estimates for positive steady-
states and analyze the stability of the positive constant solution. And then,
based on these, we mainly discuss effects of the rate of killing infected cells
on the bifurcation solution emanating from the positive constant solution by
taking the killing rate as the bifurcation parameter.

Keywords Tumor-virus system, bifurcation, positive solution, stability, Leray-
Schauder degree.
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1. Introduction

Mathematical modeling research of virus-cell interaction has a long history. Equally,
extensive efforts have been dedicated to the mathematical modeling of cancer devel-
opment by oncologists over many years. In this paper, we analyze a complex process
that involves both virus-cell interaction and tumor growth, which is the interaction
of the so called oncolytic viruses with tumors. The interaction between oncolytic
virus and tumor cells is amenable to mathematical modeling using adaptations of
techniques employed previously for modeling other types of virus-cell interaction.
The corresponding model considers two types of cells growing in logistic fashion,
which has the following form:ut = r1u(1− (u+ v)/k)− buv, t > 0,

vt = r2v(1− (u+ v)/k) + buv − av, t > 0,
(1.1)

where u and v are the sizes of uninfected and infected cells populations. The co-
efficients r1, r2, k, b, a are positive constants. r1, r2 are the maximum per capita
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growth rates of uninfected and infected cells, k is the carrying capacity, b is the
transmission rate, and a is the rate of infected cells killed by the virus. Model
(1.1) is a version of the classical predator-prey model of a biological community
first developed by Lotka [14] and Volterra [20]. The term buv describes the simplest
correspondence between prey consumption and predator production similar to the
law of mass action. The main result of the analysis of a more general model with
respect to (1.1) in [22] consists in defining conditions required for maximum reduc-
tion of the tumor load, where whether the tumor cells would become extinct has
not been stated clearly. In [16], a complete parametric analysis of dynamic regimes
of a conceptual model (which contains model (1.1)) of anti-tumor virus therapy
is presented. The authors described deterministic elimination of the tumor cells.
Moreover, for different parameter values, they analyzed the asymptotic state to the
system.

As most solid tumors have distinct spatial structure, tumor-virus dynamics is
usually described by systems of partial differential equations (such as [4–7, 10, 18,
24]), which is an obvious and necessary extension of ordinary differential equation
models. In general, these partial differential equation systems are basically divided
into two types: (I) The different populations of cells are continuously presented
everywhere in the tumor at all times (see [6]); (II) The different populations of cells
are separated by interfaces (see [7]).

In larger-scale of tumor-virus dynamical systems, where the models described
by partial differential equations, the governing equations are typically of reaction-
diffusion type since the distribution of the cells are spatially inhomogeneous. In
recent decades, reaction-diffusion equations have been successfully used to model
the dynamics of tumors, see [1, 3, 9, 23] for examples. For a similar consideration,
instead of (1.1), we are led to investigating the following reaction-diffusion system

ut −∆u = r1u(1− (u+ v)/k)− buv, x ∈ Ω, t > 0,

vt −∆v = r2v(1− (u+ v)/k) + buv − av, x ∈ Ω, t > 0,

u(x, t) ≥ 0, 6≡ 0, v(x, t) ≥ 0, 6≡ 0, x ∈ Ω, t = 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(1.2)

in a bounded domain Ω ⊂ RN with smooth boundary ∂Ω. Where ν is the outward
unit normal vector on ∂Ω. With an appropriate change of variables, the model (1.2)
can be simplified to the following system

ut −∆u = u(1− (u+ v))− βuv, x ∈ Ω, t > 0,

vt −∆v = αv(1− (u+ v)) + βuv −mv, x ∈ Ω, t > 0,

u(x, 0) ≥ 0, 6≡ 0, v(x, 0) ≥ 0, 6≡ 0, x ∈ Ω, t = 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(1.3)

where α = r2
r1

, β = bk
r1

, m = a
r1

. Then m will be regarded as the rate of infected
cells killed by the virus.

Bifurcation solution of partial differential equation systems is one of the prin-
cipal concerns of many researchers, and many valuable results were obtained. For
example, a diffusive predator-prey system with Holling-type functional response and
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homogenous Neumann boundary condition was considered in [8], where the authors
considered the bifurcation solution emanating from a positive constant solution by
taking the growth rate as a bifurcation parameter, and performed a detailed local
and global bifurcation analysis to the diffusive system. In [17], the author surveyed
some basic bifurcation results for equation in a setting of infinite dimensional Ba-
nach spaces. For a reaction-diffusion system, he found the bifurcating points and
obtained a general bifurcation result by taking the diffusion coefficient as a bifur-
cation parameter. In [19], a semi-linear elliptic problem with nonlinear boundary
conditions was studied. The author used the bifurcation results to investigate the
set of positive solutions bifurcating from the trivial line. A generic Turing type
reaction-diffusion system derived from the Taylor expansion near a constant equi-
librium was considered in [11], where the authors studied the existence of Hopf
bifurcations and steady-state bifurcations, analyzed the bifurcation direction and
the stability of the bifurcating periodic obits. Moreover, numerical simulations were
included to show the spatiotemporal dynamics. Regarded the growth rate of prey
as the bifurcation parameter, a delayed predator-prey system with diffusion and
Dirichlet boundary conditions was investigated in [12]. The authors showed that
Hopf bifurcation occurs when the parameter varies. Furthermore, the explicit al-
gorithm for determining the direction of the Hopf bifurcations and stability of the
bifurcating periodic solutions were derived.

For a biological depletion model, the authors, in [21], discussed the stability of
the positive constant steady-states and made a detailed description for the global
bifurcation structure. Where they took the diffusion coefficient as the bifurcation
parameter to investigate the bifurcation solution emanating from positive constant
solutions for the model. It is worth noting that the bifurcation parameter sequence
is non-monotonic (which means that the extra condition is needed) and the positive
constant solutions both have no relationship with the bifurcation parameter.

Motivated by the techniques in [21], in this paper, we mainly study the effects
of m on positive steady-states of (1.3), specifically, we consider the effects of m on
bifurcations of (1.3), and our aim is to make a better description for the structure
of non-constant steady-states. Different from [21], here, we will take m as the
bifurcation parameter to discuss the bifurcation solution which emanates from the
positive constant solution. The result shows that the local bifurcation emanating
form the positive constant solution may be extended to global bifurcation if m is
restricted in a suitable value range. Compared with [21], we find that the positive
constant solution depends on the bifurcation parameter m. What’s more, influenced
by the model itself, in order to ensure the existence of the positive constant in our
model, we must claim that m is in a bounded interval. So, the bifurcation points
are in a bounded domain. Moreover, we see that the bifurcation points come in
pairs, say, m−i and m+

i . Besides that, {m−i } and {m+
i } can be arranged orderly.

Just for these reasons, it needs no extra conditions when we discuss the bifurcation
solutions (While in [21], it does, see Remark 2.3 in Subsection 2.3). Our result
shows that if the bifurcation curve Γ−j eventually meets some bifurcation points,

and k is the biggest footnote of all these points at which Γ−j meets, then Γ−j must

meet both (m−k , 0) and (m+
k , 0).
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2. Main results

2.1. A priori estimates of non-constant positive solutions

As a preparation for bifurcation analysis, in this subsection, we give a priori upper
bounds for non-constant positive solutions of the elliptic system

−∆u = u(1− (u+ v))− βuv, x ∈ Ω,

−∆v = αv(1− (u+ v)) + βuv −mv, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(2.1)

Here, to give a simple and direct proof for the a priori upper bounds, we prefer
an elliptic maximum principle due to Lou and Ni.

Lemma 2.1 (Proposition 2.2, [15]). Suppose that F (x, ω) ∈ C(Ω × R). If ω ∈
C2(Ω) ∩ C1(Ω) satisfies

∆ω(x) + F (x, ω(x)) ≥ 0 in Ω; ∂νω ≤ 0, on ∂Ω,

and ω(x0) = maxΩ ω, then F (x0, ω(x0)) ≥ 0. Similarly, if the two inequalities are
reversed and ω(x0) = minΩ ω, then F (x0, ω(x0)) ≤ 0.

Theorem 2.1 (A priori estimates). Suppose m < α+ β. If (u, v) = (u(x), v(x)) is
a non-constant positive solution to the elliptic system (2.1), then

u < 1 and v <
α+ β −m

α
.

Proof. It is clear that u < 1 is an immediate result of Lemma 2.1. We only need
to show the upper bound for v. If v attains its maximum at some x0 ∈ Ω, then by
the second equation of (2.1) and Lemma 2.1 we get

αv(x0)(1− (u(x0) + v(x0))) + βu(x0)v(x0)−mv(x0) ≥ 0.

The positivity of v implies that

α(1− (u(x0) + v(x0))) + βu(x0)−m ≥ 0.

And then

v ≤ v(x0) ≤ α(1− u(x0)) + βu(x0)−m
α

<
α+ β −m

α

since u < 1. This completes the proof.

Remark 2.1. In Subsection 2.3, we discuss bifurcation solution under condition
(H1) (see Subsection 2.3). We see (H1) insures m < α+ β.

2.2. Stability of the constant positive solution

It is easy to verify that the system (2.1) has a unique positive constant solution
(u∗, v∗) with

u∗ =
αβ − (β + 1)m

β(α− β − 1)
, v∗ =

m− β
β(α− β − 1)
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if and only if one of the following two conditions is satisfied:
(H1) β < m < αβ

β+1 , α > β + 1;

(H2) αβ
β+1 < m < β,α < β + 1.

We next prove the local stability of (u∗, v∗). Let 0 = λ0 < λ1 < λ2 < · · · be
the sequence of eigenvalues for the elliptic operator −∆ subject to the Neumann
boundary condition on Ω, where each λi has multiplicity si ≥ 1. Let φij , 1 ≤ j ≤ si,
be the normalized eigenfunctions corresponding to λi. Then the set {φij}, i ≥ 0, 1 ≤
j ≤ si, forms a complete orthogonal basis in L2(Ω). The local stability of (u∗, v∗)
is as follows.

Theorem 2.2. The constant steady-state (u∗, v∗) of (2.1) is asymptotically stable
if (H2) holds, and is unstable if (H1) holds.

Proof. Consider the linearized operator of (2.1) at (u∗, v∗)

L ,

∆ + f0 f1

g0 ∆ + g1

 ,

where

f0 =
(β + 1)m− αβ
β(α− β − 1)

< 0, f1 =
(β + 1)((β + 1)m− αβ)

β(α− β − 1)
< 0,

g0 =
(β − α)(m− β)

β(α− β − 1)
, g1 =

α(β −m)

β(α− β − 1)
< 0.

Suppose (φ, ψ)T is an eigenfunction of L corresponding to eigenvalue µ. Then we
have ∆φ+ (f0 − µ)φ+ f1ψ = 0,

∆ψ + (g1 − µ)ψ + g0φ) = 0.

Let

φ =
∑

0≤i≤∞,1≤j≤si

aijφij , and ψ =
∑

0≤i≤∞,1≤j≤si

bijφij ,

where aij , bij are constants. We find that

∑
0≤i≤∞,1≤j≤si

 f0 − λi − µ f1

g0 g1 − λi − µ

  aij

bij

φij = 0.

It follows that µ is an eigenvalue of L if and only if for some i ≥ 0 the determinant
of the corresponding matrix is zero, that is,

µ2 − Piµ+Qi = 0

with

Pi = −2λi + f0 + g1 < 0,

Qi = (f0 − λi)(g1 − λi)− f1 + g0 =
β(1 + β − α)

α
f0g1 + λ2

i − (f0 + g1)λi. (2.2)
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If α < β + 1, then by (2.2), Qi > 0 for all i ≥ 0. This implies that the real
parts Reµ of µ are negative for all eigenvalues µ, and so the steady-state (u∗, v∗) is
asymptotically stable.

If α > β + 1, then from (2.2) we have at least Q0 = β(1+β−α)f0g1
α < 0, and so

the instability of (u∗, v∗) follows. And the proof is finished.
When (u∗, v∗) is unstable, we may expect the existence of non-constant steady-

states near (u∗, v∗). In the following, we will discuss the bifurcation under (H1).

2.3. Local bifurcation and global bifurcation

In this subsection, under the condition (H1), we fix α and β, and take m as a
bifurcation parameter to analyze the bifurcating solution of (2.1), which bifurcates
from (u∗, v∗). By using the local bifurcation theory, we give a precise description
for the structure of positive solutions near the bifurcation points. Then we prolong
the bifurcation curves by the global bifurcation theory.

With the condition (H1), we suppose

α = 4β2 + 5β + 1, λ1 ≤
β2

2β + 1
, (2.3)

or

α 6= 4β2 + 5β + 1, (2.4)

λ1 ≤
β(α+ β + 1)− 2β(1 + β)

√
α− β

α− 4β2 − 5β − 1
, λ∗ (2.5)

holds. Moreover, we define iα = iα(α, β,Ω) the largest positive integer such that

λi ≤
β2

2β + 1
or λi ≤ λ∗, for i ≤ iα.

Clearly, if (2.3) or (2.4)–(2.5) is satisfied, then 1 ≤ iα <∞. In this case, we let

m−i =
β(α+β+1)−(α−β−1)λi−

√
(α−β−1)[(α−4β2−5β−1)λ2

i−2β(α+β+1)λi+β2(α−β−1)]

2(β+1) ,

m+
i =

β(α+β+1)−(α−β−1)λi+
√

(α−β−1)[(α−4β2−5β−1)λ2
i−2β(α+β+1)λi+β2(α−β−1)]

2(β+1) .

It is easy to see that these points satisfy

β < m−1 < m−2 < · · · < m−iα < m+
iα
< · · · < m+

2 < m+
1 <

βα

β + 1
. (2.6)

Remark 2.2. λ∗ is the larger root of the equation (α− 4β2 − 5β − 1)λ2 − 2β(α+
β + 1)λ + β2(α − β − 1) = 0. It is easy to show that whether α − 4β2 − 5β − 1 is
larger than 0 or smaller than 0, λ∗ is always positive.

Remark 2.3. In [21], the bifurcation parameter sequence {di} is non-monotonic,
so there needs the extra condition di 6= dj for i 6= j. Here {m−i } and {m+

i } are
monotonic, and we do not need such additional conditions.

Now, let Y = L2(Ω) × L2(Ω) be the Hilbert space with the inner produc-
t (U1, U2)Y = (u1, u2)L2(Ω) + (v1, v2)L2(Ω) for U1 = (u1, v1), U2 = (u2, v2) ∈ Y,
and

E = {(u, v) : u, v ∈ C2(Ω), ∂νu = ∂νv = 0, x ∈ ∂Ω}.
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Then E is a Banach space with usual C2 norm. Define operator F : (β, βαβ+1 )×E →
Y as

F (m,U) =

 ∆u+ u(1− (u+ v))− βuv

∆v + αv(1− (u+ v)) + βuv −mv

 ,

where U = (u, v). Thus U is the solution of (2.1) if and only if U satisfies F (m,U) =
0. With U∗ = (u∗, v∗), we have

F (m,U∗) = 0

for all β < m < βα
β+1 .

Theorem 2.3. Suppose (H1) holds. If

α = 4β2 + 5β + 1, λj ≤
β2

2β + 1
, (2.7)

or
α 6= 4β2 + 5β + 1, λj ≤ λ∗, (2.8)

holds and λj is simple for some j. Then (m−j , U
∗) and (m+

j , U
∗) are both bifurcation

points of F (m,U) = 0 with respect to the curve (m,U∗).

Proof. Note that the Fréchet derivative of F at U∗ is

FU (m,U∗) =

∆ + f0 f1

g0 ∆ + g1

 = L.

Let Φ = (φ, ψ)T ∈ kerL with kerL being the kernel space of L. And write

φ =
∑

0≤i≤∞,1≤j≤si

aijφij , ψ =
∑

0≤i≤∞,1≤j≤si

bijφij

as in the proof of Theorem 2.2. Then

∑
0≤i≤∞,1≤j≤si

Bi

aij

bij

φij = 0

with

Bi =

 f0 − λi f1

g0 g1 − λi

 .

Since
detBi = 0 if and only if m = m−i or m = m+

i ,

taking m = m−j , by (2.6) we know that m−j 6= m−i and m−j 6= m+
i for i 6= j. So,

there only holds detBj = 0. Moreover, the eigenfunction corresponding to λj is φj1
in view of the multiplicity of λj is 1. Then

kerL = span{Φ}, Φ =

 1

bj1

φj1
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with bj1 =
λj−f0
f1

< 0. Considering the adjoint operator L∗ of L

L∗ =

∆ + f0 g0

f1 ∆ + g1

 ,

we obtain

kerL∗ = span{Φ∗}, Φ∗ =

 1

b∗j1

φj1

with b∗j1 =
λj−f0
g0

< 0. Here we note that g0 < 0, under the assumption (H1).

Denote by R(L) the range space of L. Then codimR(L) = dim ker(L∗) = 1 in view
of R(L) = (kerL∗)⊥.

Finally, since

FUm(m−j , U
∗)Φ =

 0 0

0 −1

Φ =

 0

−bj1φj1

 ,

and
(FUm(m−j , U

∗Φ),Φ∗)Y = (−bj1φj1, b∗j1φj1) = −bj1b∗j1 < 0,

then we obtain FUm(m−j , U
∗)Φ /∈ R(L). Then the conditions of the local bifurcation

theorem [2] are satisfied, and it follows that (m−j , U
∗) is a bifurcation point. This

completes the proof.
According to the local bifurcation theorem, there is a one-parameter family of

non-trivial solutions Γ−j (s) = (m(s), u(s), v(s)) of the problem (2.1) for |s| suffi-

ciently small, where m(s), u(s), v(s) are continuous functions satisfying m(0) = m−j
and

u(s) = u∗ + sφj1 + o(s), v(s) = v∗ + sbj1φj1 + o(s), m(s) = m−j + o(s).

The zero set of F consists of two curves (m,U∗) and Γ−j (s) in a neighborhood of

the bifurcation point (m−j , U
∗). What’s more, in the same way as above we can

verify that (m+
j , U

∗) is also a bifurcation point and we have the similar conclusion

for the bifurcation point (m+
j , U

∗).

Remark 2.4. Theorem 2.3 assumes that λj is simple for some j ≥ 1. In one
dimensional case, it is well known that all eigenvalues of −∆ are simple. However,
in multi-dimensional case, in general, it is hard to know the multiplicity of λj , j ≥
1. Sometimes, λj , j ≥ 1 may be simple for special Ω. For example, if Ω is a
rectangle region, say, Ω = (0, a)×(0, b), then the set of eigenvalues of −∆ is {λm,n =
(mπa )2 + (nπb )2}∞m,n=0, and ϕm,n(x, y) = cos mπa x cos nπb y, (x, y) ∈ (0, a) × (0, b), is
the eigenfunction corresponding to λm,n. For m = n, it is easy to verify that the
corresponding eigenvalues have multiplicity one indeed.

The above local bifurcation result gives a relatively precise description for the
structure of positive solutions near bifurcation points, but it provides no information
on the bifurcation curve far from the equilibrium. Therefore, a further study is
necessary in order to understand the bifurcation curve when it is far away from the



272 W. Suo & Y. Jia

bifurcation point. In the following, we investigate the coexistence of the steady-
state solution by considering the global bifurcation. For simplicity, we suppose that
Ω is one dimensional, say Ω = (0, l). By applying the global bifurcation theory and
the Leray-Schauder degree theory to the compact linear operator, we can obtain
the following global result.

Theorem 2.4. Let Ω = (0, l) and (H1) be satisfied. If (2.7) or (2.8) holds for some
j. Then the bifurcation curve Γ−j satisfies either situation (i) or situation (ii).

(i) The projection of the bifurcation curve Γ−j on the m-axis contains (β,m−j ) or

(m−j ,
βα
β+1 ). If m > m−1 , m 6= m−k and m 6= m+

k for any integer k > 0, then

the system (2.1) possesses at least one non-constant positive solution;

(ii) Γ−j meets some bifurcation points, which are in {(m−i , 0)}iα1 \ {(m
−
j , 0)} or

{(m+
i , 0)}iα1 . If Γ−j meets (m−k , 0), but not (m−i , 0) and (m+

i , 0) for any i > k.

Then it must meet (m+
k , 0).

Proof. We rewrite the system (2.1) in a new form. Let ũ = u − u∗, ṽ = v − v∗.
Then (2.1) is transformed into

− ũ
′′

= f0ũ+ f1ṽ + f̃(ũ, ṽ),

− ṽ
′′

= g0ũ+ g1ṽ + g̃(ũ, ṽ),

where f̃ and g̃ are higher-order terms of ũ and ṽ. The constant steady-state (u∗, v∗)
of (2.1) is converted to (0, 0) of this new system.

Let G : h→ ω be the Green operator for the boundary value problem

−ω′′ − f0ω = h in (0, l); ω′ = 0 at x = 0, l,

and G′ : h→ ω be the Green operator for

−ω′′ − g1ω = h in (0, l); ω′ = 0 at x = 0, l

with f0 < 0 and g1 < 0. Put Ũ = (ũ, ṽ),

K(m)Ũ = (f1G(ṽ), g0G
′(ũ)),

and
H(Ũ) = (G(f̃(ũ, ṽ)), G′(g̃(ũ, ṽ))).

Then system (2.1) can be interpreted as the equation

Ũ = K(m)Ũ +H(Ũ). (2.9)

For each m ∈ (β, βαβ+1 ), K(m) and H (H(Ũ) = o(|Ũ |)) are compact linear operators
on E.

In order to apply the global bifurcation theory in [13], firstly, we need to verify
that 1 is an eigenvalue of K(m−j ) with algebraic multiplicity one. By the proof of

Theorem 2.3, it is clear that ker(K(m−j )−I) = kerL = span{Φ}, so 1 is an eigenvalue

of K(m−j ) and dimker(K(m−j ) − I) = 1. Because the algebraic multiplicity of

eigenvalue 1 is the dimension of the generalized null space
⋃∞
i=1 ker(K(m−j ) − I)i,

then we need to verify that ker(K(m−j )− I) ∩R(K(m−j )− I) = {0}.
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We now compute ker(K∗(m−j ) − I), where K∗(m−j ) is the adjoint of K(m−j ).

Let (φ, ψ)T ∈ ker(K∗(m−j )− I). Then

g0G
′(ψ) = φ, f1G(φ) = ψ.

By the definition of G and G′ we obtain

φ′′ + g1φ+ g0ψ = 0, ψ′′ + f0ψ + f1φ = 0.

In the one dimensional case, let {φi} be a complete orthogonal basis in L2((0, l)).
Write φ =

∑
aiφi, ψ =

∑
biφi, where ai, bi are constants. Then

∞∑
i=0

Ai

ai

bi

φi = 0,

where

Ai =

 g1 − λi g0

f1 f0 − λi

 .

By calculation we know that detAi = detBi, then detAi = 0 only for i = j, and
ker(K∗(m−j ) − I) is spanned by (1, f1

λj−f0 )φj (In the case of one dimensional, we

denote φj1 by φj).
Since

(Φ, (1,
f1

λj − f0
)φj) = ((1,

λj − f0

f1
)φj , (1,

f1

λj − f0
)φj) = 2,

this means that Φ /∈ (ker(K∗(m−j )− I))⊥ = R(K(m−j )− I). Further,

ker(K(m−j )− I) ∩R(K(m−j )− I) = {0},

which shows that the eigenvalue 1 has algebraic multiplicity one indeed.
Secondly, we need to verify that the index(I − K(m−j ) − H, (m−j , 0)) changes

when m crosses m−j . That is, for ε > 0 sufficient small, we should show that the
index inequality

index(I −K(m−j − ε)−H, (m
−
j − ε, 0)) 6= index(I −K(m−j + ε)−H, (m−j + ε, 0))

holds. Suppose N(m−j ) is a small neighborhood of m−j . If m ∈ N(m−j ),m 6= m−j ,
then the linear operator I − K(m) : E → E is a bijection and 0 is an isolated
solution of (2.9) for fixed m. The index of this isolated zero of I − K(m) − H is
given by

index(I −K(m)−H, (m, 0)) = deg(I −K(m), B, 0) = (−1)p,

where B is a sufficiently small ball centering at 0, and p is the sum of the algebraic
multiplicities of eigenvalues of K(m) that are lager than 1.

Suppose that µ is an eigenvalue of K(m) and (φ, ψ)T is the corresponding eigen-
function. Then

−µφ′′ − µf0φ = f1ψ, −µψ′′ − µg1ψ = g0φ.
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Let φ =
∑
aiφi, ψ =

∑
biφi. Then

∞∑
i=0

µ(−λi + f0) f1

g0 µ(−λi + g1)

 ai

bi

φi = 0.

Thus µ satisfies

µ2(−λi + f0)(−λi + g1) = f1g0 (2.10)

for 0 ≤ i ≤ ∞.
Let µ(m), µ̃(m) be the roots of the equation (2.10). Then

µ(m) =

√
f1g0

(−λi + f0)(−λi + g1)
, µ̃(m) = −

√
f1g0

(−λi + f0)(−λi + g1)
.

Take m = m−j . Then µ = 1 is a root of (2.10) if and only if i = j. And in this case

µ(m−j ) = 1 and µ̃(m−j ) < 1

since µ(m) is increasing in (β,m∗j ) and decreasing in (m∗j ,
βα
β+1 ), where

m∗j =
β
√

(β + 1)2λ2
j + (β + 1)(α+ λj(α+ β + 1))− β(β + 1)λj

(β + 1)
.

These points satisfy m−j ∈ (β,m∗j ), m
+
j ∈ (m∗j ,

βα
β+1 ). For ε > 0 sufficiently small,

there results
µ(m−j + ε) > 1, and µ(m−j − ε) < 1.

Hence K(m−j + ε) has exactly one more eigenvalues that are larger than 1 than

K(m−j − ε) dose. In the same way as above we can verify that this eigenvalue has
algebraic multiplicity one, so the desired index inequality holds.

By the global bifurcation theorem, we know that either Γ−j is noncompact in

(β, βαβ+1 )×E or Γ−j meets m+
k and m−k where m−k 6= m−j for k 6= j. Then, we verify

if the second alternative occurs, it must be the situation (ii) in Theorem 2.4. If
Γ−j meets some other bifurcation points, say, Γ−j meets (m−k , 0), but dose not meet

(m−i , 0) and (m+
i , 0) for any i > k. Consider the system (2.1) on the interval (0, l/k)

−u′′ = u(1− (u+ v))− βuv,

−v′′ = αv(1− (u+ v)) + βuv −mv,

u′ = v′ = 0, x = 0, l/k,

(2.11)

with x ∈ (0, l/k) in equations. If U is a solution of (2.11), then we construct a
solution U to (2.1) by a reflective and periodic extension. Let xn = nl/k, n =
0, 1, · · · , k, and

U(x) =

U(x− x2n), x2n ≤ x ≤ x2n+1,

U(x2n+2 − x), x2n+1 ≤ x ≤ x2n+2.
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Define m̂+
i and m̂−i as

m̂+
i =

β(α+β+1)−(α−β−1)λi+

√
(α−β−1)[(α−4β2−5β−1)λ

2
i−2β(α+β+1)λi+β2(α−β−1)]

2(β+1) ,

m̂−i =
β(α+β+1)−(α−β−1)λi−

√
(α−β−1)[(α−4β2−5β−1)λ

2
i−2β(α+β+1)λi+β2(α−β−1)]

2(β+1) ,

where λi = (kπi/l)2. Then λi = λik (λik is the ik-th eigenvalue for the elliptic
operator −∆ under the one dimensional case). We obtain that m̂−1 = m−k is a bifur-

cation point of (2.1). Let Γ
−
1 be the bifurcation branch of (2.11) that meets (m̂−1 , 0).

Then by the global bifurcation theorem, either it is noncompact in (β, βαβ+1 )×E or
it meets

case (1): (m̂−s , 0) or (m̂+
s , 0) with s > 1;

case (2): (m̂+
1 , 0).

If case (1) occurs, then by the extension we know that Γ−j meets (m−sk, 0) or

(m+
sk, 0), where sk > k. This violates the definition of k. So, case (1) will not

occur. Suppose that case (2) also will not occur. Since we consider the bifurcation
from positive constant solution (u∗, v∗), the situation αβ

β+1 = m = β will not be

considered. Otherwise, (u∗, v∗) ≡ (0, 0). For m < β and m > αβ
β+1 , we know

that (u∗, v∗) is stable in light of Theorem 2.2, so there has no nonconstant positive

solution bifurcating from (u∗, v∗) indeed. And then, Γ
−
1 is noncompact in (β, βαβ+1 )×

E, and by the extension, Γ−j is noncompact in (β, βαβ+1 ) × E (More precisely, Γ
−
1

and Γ−j are noncompact in a maximal connected subset of (β, βαβ+1 ) × E in view

of the boundedness of positive solutions), which means that the projection of the
bifurcation curve Γ−j on the m-axis contains (β,m−j ) or (m−j ,

βα
β+1 ), which is the

situation (i) in Theorem 2.4; If case (2) occurs, by extension we know that Γ−j
meets (m+

k , 0), which is the situation (ii) in Theorem 2.4.

If Γ−j meets some other bifurcation points, say, Γ−j meets (m+
k , 0), but does not

meet (m−i , 0) and (m+
i , 0) for any i > k. By the same argument, we can get the

same conclusion.

Using the same way as above, we can obtain that the bifurcation curve Γ+
j has

similar properties with Γ−j . The proof is accomplished.

3. Discussion and conclusion

For tumor-virus models, from valuable results that the scholars have obtained, we
know that the size of the tumor may be reduced in a short time if the injected viral
density is suitable. This means that both infected and uninfected tumors can be
eliminated with time, and complete recovery is possible. We investigate a mathe-
matical model for cancer treatment by using oncolytic viruses. The viruses specif-
ically infect and kill cancer cells. We establish the existence of the non-constant
positive solution and we know the rate of killing the infected cell has effects on the
global bifurcation.

In order to make good use of oncolytic virus, there is still much to be learned and
discovered about oncolytic viruses and virus therapy. Because of possible adverse
side effects, it is important to achieve reduction of the tumor cells with small dosage,
which remains a problem. Searching for optimal schedules of injections is also a



276 W. Suo & Y. Jia

promising area for future research. The role of the immune reaction in controlling
the extent of infection is still unclear. One may try to explore these problems and
results established in this paper, although they are based on a number of simplifying
assumptions, they still can be used as a rigorous tool. As more information becomes
available, our model can be refined and expanded to incorporated more of the known
biology. To this end, the development of biologically realistic mathematical models
is an important tool to explore these problems.
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