BOUNDEDNESS OF TOEPLITZ OPERATORS GENERATED BY THE CAMPANATO-TYPE FUNCTIONS AND RIESZ TRANSFORMS ASSOCIATED WITH SCHÖDINGER OPERATORS

MO Hui-xia, YU Dong-yan, SUI Xin

(School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract: In the paper, we study the boundedness of the Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with the Schrödinge operators. Using the sharp maximal function estimate, we establish the boundedness of the Toeplitz operator Θ^b on the Lebesgue space, which extend the previous results about the comutators.

Keywords: Commutator; Campanato-type functions; Riesz transform; Schrödinger operator

2010 MR Subject Classification: 42B20; 42B30; 42B35

Document code: A Article ID: 0255-7797(2017)02-0239-08

1 Introduction

Let $\mathfrak{L} = -\triangle + V$ be a Schrödinger operator on $\mathbb{R}^n (n > 3)$, where \triangle is the Laplacian on \mathbb{R}^n and $V \neq 0$ is a nonnegative locally integrable function. The problems about the Schrödinger operators \mathfrak{L} were well studied (see [1–3] for example). Especially, Fefferman [1], Shen [2] and Zhong [3] developed some basic results.

The commutators generated by the Riesz transforms associated with the Schrödinger operators and BMO functions or Lipschitz functions also attracted much attention (see [4–6] for example). Chu [7], consider the boundedness of commutators generalized by the BMO₂ functions and the Riesz transform $\nabla(-\Delta + V)^{-1/2}$ on Lebesgue spaces. Mo et al. [8] established the boundedness of commutators generated by the Campanato-type functions and the Riesz transforms associated with Schrödinger operators.

First, let us introduce some notations. A nonnegative locally $L^q(\mathbb{R}^n)$ integrable function V is said to belong to $B_q(1 < q < \infty)$ if there exists C = C(q, V) > 0 such that the reverse Hölder's inequality

$$\left(\frac{1}{|B|} \int_{B} V(x)^{q} dx\right)^{1/q} \le C\left(\frac{1}{|B|} \int_{B} V(x) dx\right) \tag{1.1}$$

Foundation item: Supported by National Natural Science Foundation of China (11161042; 11471050; 11601035).

Biography: Mo Huixia (1976–), female, born at Shijiazhung, Hebei, vice professor, major in harmonic analysis.

holds for every ball B in \mathbb{R}^n .

Let $T_{j,1} = \nabla(-\triangle + V)^{-1/2}$ or $T_{j,1} = \pm I$ and $T_{j,2}$ be a linear operator which is bounded on $L^p(\mathbb{R}^n)$ space, for $j = 1, 2, \dots, m$. Let $M_b f = bf$, where b is a locally integrable function on \mathbb{R}^n , then the Toeplitz operator is defined by

$$\Theta^b = \sum_{j=1}^m T_{j,1} M_b T_{j,2}.$$

About the Toeplitz operator, there are some results. Mo et al. [9] established the boundedness of the Toeplitz operator generalized by the singular integral operator with nonsmooth kernel and the generalized fractional. Liu et al. [11] investigated the boundness of the Toeplitz operator related to the generalized fractional integral operator.

The commutator [b,T](f) = bT(f) - T(bf) is a particular case of the Toeplitz operators. Inspired by [7–10], we will consider the boundedness of the Toeplitz operators generated by the Campanato-type functions and Riesz transforms associated with Schödinger operators.

Definition 1.1 Let $f \in L_{loc}(\mathbb{R}^n)$, then the sharp maximal function associated with $\mathfrak{L} = -\triangle + V$ is defined by

$$M_{\mathfrak{L}}^{\#}(f)(x) = \begin{cases} \sup_{x \in B} \frac{1}{|B|} \int_{B(x,s)} |f(y) - f_{B(x,s)}| dy, & \text{when } s < \rho(x), \\ \sup_{x \in B} \frac{1}{|B(x,s)|} \int_{B(x,s)} |f(y)| dy, & \text{when } s \ge \rho(x), \end{cases}$$

where ρ is define by

$$\rho(x) = \sup \left\{ r > 0 : \frac{1}{r^{n-2}} \int_{B(x,r)} V \le 1 \right\}.$$

Definition 1.2 [12, 13] Let $\mathfrak{L} = -\triangle + V$, $p \in (0, \infty)$ and $\beta \in \mathbb{R}$. A function $f \in L^p_{loc}(\mathbb{R}^n)$ is said to be in $\Lambda^{\beta,p}_{\mathfrak{L}}(\mathbb{R}^n)$, if there exists a nonnegative constant C such that for all $x \in \mathbb{R}^n$ and $0 < s < \rho(x) \le r$,

$$\left\{ \frac{1}{|B(x,s)|^{1+p\beta}} \int_{B(x,s)} |f(y) - f_{B(x,s)}|^p dy \right\}^{1/p} + \left\{ \frac{1}{|B(x,r)|^{1+p\beta}} \int_{B(x,r)} |f(y)|^p dy \right\}^{1/p} \le C,$$

where $f_B = \frac{1}{|B|} \int_B f(y) dy$ for any ball B. Moreover, the minimal constant C as above is defined for the norm of f in the space $\Lambda_{\mathfrak{L}}^{\beta,p}(\mathbb{R}^n)$ and denote by $||f||_{\Lambda_{\mathfrak{L}}^{\beta,p}(\mathbb{R}^n)}$.

Remak 1.1 [12] When $p \in [1, \infty)$, $\Lambda_{\mathfrak{L}}^{0,p}(\mathbb{R}^n) = \mathrm{BMO}_{\mathfrak{L}}(\mathbb{R}^n)$. And, when $0 \leq \beta < \infty$ and $p_1, p_2 \in [1, \infty)$, $\Lambda_{\mathfrak{L}}^{\beta,p_1}(\mathbb{R}^n) = \Lambda_{\mathfrak{L}}^{\beta,p_2}(\mathbb{R}^n)$ and $\|f\|_{\Lambda_{\mathfrak{L}}^{\beta,p_1}(\mathbb{R}^n)} \sim \|f\|_{\Lambda_{\mathfrak{L}}^{\beta,p_2}(\mathbb{R}^n)}$. For simplicity, we denote $\Lambda_{\mathfrak{L}}^{\beta,p}(\mathbb{R}^n)$ by $\Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^n)$.

Lemma 1.1 (see [2, 7]) Suppose that $V \in B_q(n/2 \le q < n)$ satisfies the condition

$$\int_{B(x,R)} \frac{V(y)}{|x-y|^{n-1}} dy \le \frac{1}{R^{n-1}} \int_{B(x,R)} V(y) dy, \tag{1.2}$$

then the kernel K(x,y) of operator $\nabla(-\triangle+V)^{-1/2}$ satisfies the following estimates: there exists a constant $\delta > 0$ such that for any nonnegative integrate i,

$$|K(x,y)| \le \frac{C_i}{\{|1+m(x,V)|x-y|\}^i} \frac{1}{|x-y|^n},$$
 (1.3)

$$|K(x+h,y) - K(x,y)| \le C \frac{|h|^{\delta}}{|x-y|^{n+\delta}}$$
 (1.4)

for $0 < |h| < \frac{|x-y|}{2}$.

Hence, $\nabla (-\triangle + V)^{-1/2}$ is boundedness on $L^p(\mathbb{R}^n)$ space for $1 , where <math>1/p_0 = 1/q - 1/n$.

Throughout this paper, the letter C always remains to denote a positive constant that may vary at each occurrence but is independent of the essential variable.

2 Theorems and Lemmas

Theorems 2.1 Let $V \in B_q$ satisfy (1.2) for $n/2 \le q < n$. Let $0 \le \beta < 1$, $b \in \Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^n)$, $1 < \tau < \infty$ and $1 < s < p_0$, where $1/p_0 = 1/q - 1/n$. Suppose that $\Theta^1 f = 0$ for any $f \in L^r(\mathbb{R}^n)$ ($1 < r < \infty$), then there exists a constant C > 0 such that

$$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x) \leq C \sum_{j=1}^{m} \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

Theorems 2.2 Let $V \in B_q$ satisfy (1.2) for $n/2 \le q < n$ and $1 < p_0 < \infty$ satisfy $1/p_0 = 1/q - 1/n$. Suppose that $\Theta^1 f = 0$ for any $f \in L^{\tau}(\mathbb{R}^n)$ $(1 < \tau < \infty)$, $0 < \beta < 1$, and $b \in \Lambda_{\mathfrak{L}}^{\beta}(\mathbb{R}^n)$. Then for $1 < r < \min\{1/\beta, p_0\}$ and $1/p = 1/r - \beta$, there exists a constant C > 0, such that

$$\|\Theta^b f\|_{L^p} \le C \sum_{i=1}^m \|b\|_{\Lambda^{\beta}_{\mathfrak{L}}} \|f\|_{L^r}.$$

Theorems 2.3 Let $V \in B_q$ satisfy (1.2) for $n/2 \le q < n$ and $1 < p_0 < \infty$ satisfy $1/p_0 = 1/q - 1/n$. Suppose that $\Theta^1 f = 0$ for any $f \in L^{\tau}(\mathbb{R}^n)$ $(1 < \tau < \infty)$ and $b \in BMO_{\mathfrak{L}}(\mathbb{R}^n)$, then for 1 , there exists a constant <math>C > 0, such that

$$\|\Theta^b f\|_{L^p} \le C \sum_{i=1}^m \|b\|_{{\mathrm{BMO}}_{\mathfrak{L}}} \|f\|_{L^p}.$$

To prove the theorems, we need the following lemmas.

Lemma 2.1 (see [7]) Let $0 < p_0 < \infty$, $p_0 \le p < \infty$ and $\delta > 0$. If f satisfies the condition $M(|f|^{\delta})^{1/\delta} \in L^{p_0}$, then exists a constant C > 0 such that

$$||M(|f|^{\delta})^{1/\delta}||_{L^{p}} \le C||M_{\mathfrak{L}}^{\#}(|f|^{\delta})^{1/\delta}||_{L^{p}}.$$

Lemma 2.2 (see [14]) For $1 \le \gamma < \infty$ and $\beta > 0$, let

$$M_{\gamma,\beta}(f)(x) = \sup_{B\ni x} \left(\frac{1}{|B|^{1-\beta\gamma/n}} \int_{B} |f(y)|^{\gamma} dy \right)^{1/\gamma}.$$

Suppose that $\gamma and <math>1/q = 1/p - \beta/n$, then $||M_{\gamma,\beta}(f)||_{L^q} \leq C||f||_{L^p}$.

Remark 2.1 When $\beta = 0$, we denote $M_{\gamma,\beta} = M_r$. And it is easy to see that M_r is boundedness on $L^p(\mathbb{R}^n)$, for 1 < r < p.

Lemma 2.3 (see [8]) Let B = B(x, r) and $0 < r < \rho(x)$, then

$$|b_{2^k B} - b_B| \le Ck |2^k B|^{\beta} ||b||_{\Lambda_{\mathfrak{g}}^{\beta}} \text{ for } k = 1, 2, \cdots.$$

3 Proofs of Theorems 2.1-2.2

First, let us prove Theorem 2.1.

Fix a ball $B = B(x, r_0)$ and let $2B = B(x, 2r_0)$. We need only to estimate

$$\frac{1}{|B|} \int_{B} |\Theta^{b} f(y) - (\Theta^{b} f)_{B}| dy.$$

Case I When $0 < r_0 < \rho(x)$, using the condition $\Theta^1 f = 0$, then we have

$$\begin{split} &\frac{1}{|B|} \int_{B} |\Theta^{b} f(y) - (\Theta^{b} f)_{B}| dy \\ &\leq &\sum_{j=1}^{m} \frac{1}{|B|} \bigg(\int_{B} |T_{j,1} M_{(b-b_{B})} T_{j,2} f(y) - (T_{j,1} M_{(b-b_{B})} T_{j,2} f)_{B}| dy \bigg). \end{split}$$

If $T_{j,1} = \nabla(-\triangle + V)^{-1/2}$, then

$$\begin{split} &\frac{1}{|B|}\int_{B}|T_{j,1}M_{(b-b_B)}T_{j,2}f(y)-(T_{j,1}M_{(b-b_B)}T_{j,2}f)_{B}|dy\\ \leq &\frac{2}{|B|}\int_{B}|T_{j,1}M_{(b-b_B)}T_{j,2}f(y)-T_{j,1}M_{(b-b_B)\chi_{R^n\backslash 2B}}T_{j,2}f(x)|dy\\ \leq &\frac{2}{|B|}\int_{B}|T_{j,1}M_{(b-b_B)\chi_{2B}}T_{j,2}f(y)|dy+\frac{2}{|B|}\int_{B}|T_{j,1}M_{(b-b_B)\chi_{R^n\backslash 2B}}T_{j,2}f(y)\\ &-T_{j,1}M_{(b-b_B)\chi_{R^n\backslash 2B}}T_{j,2}f(x)|dy\\ =: &I_{1}+I_{2}. \end{split}$$

Let τ and s be as in Theorem 2.1. Then using Hölder's inequality and the L^s boundedness of $T_{j,1}$ (Lemma 1.1), we have

$$\begin{split} I_{1} &\leq C \left(\frac{1}{|B|} \int_{B} |T_{j,1} M_{(b-b_{B})\chi_{2B}} T_{j,2} f(y)|^{s} dy \right)^{\frac{1}{s}} \\ &\leq C \left(\frac{1}{|2B|^{1+\beta s\tau'}} \int_{2B} |b(y) - b_{B}|^{s\tau'} dy \right)^{\frac{1}{s\tau'}} \left(\frac{1}{|2B|^{1-\beta s\tau}} \int_{2B} |T_{j,2} f(y)|^{s\tau} dy \right)^{\frac{1}{s\tau}} \\ &\leq C \|b\|_{\Lambda_{0}^{\beta}} M_{s\tau,n\beta} (T_{j,2} f)(x). \end{split}$$

Let's estimate I_2 . From (1.4), it follows that

$$\begin{split} &|T_{j,1}[(b-b_B)\chi_{R^n\backslash 2B}T_{j,2}f](y)-T_{j,1}[(b-b_B)\chi_{R^n\backslash 2B}T_{j,2}f](x)|\\ &=\left|\int_{(2B)^c}(b(z)-b_B)T_{j,2}f(z)(K(y,z)-K(x,z))dz\right|\\ &\leq C\sum_{k=1}^{\infty}\int_{2^kr_0<|z-x|\leq 2^{k+1}r_0}\frac{|y-x|^{\delta}}{|z-x|^{n+\delta}}|b(z)-b_B||T_{j,2}f(z)|dz\\ &\leq C\sum_{k=1}^{\infty}\frac{r_0^{\delta}}{(2^kr_0)^{n+\delta}}\int_{|z-x|\leq 2^{k+1}r_0}|b(z)-b_{2^{k+1}B}||T_{j,2}f(z)|dz\\ &+C\sum_{k=1}^{\infty}\frac{r_0^{\delta}}{(2^kr_0)^{n+\delta}}\int_{|z-x|\leq 2^{k+1}r_0}|b_{2^{k+1}B}-b_B||T_{j,2}f(z)|dz\\ =: H_1+H_2. \end{split}$$

For H_1 , since $\delta > 0$, by Hölder's inequality, we have

$$H_{1} \leq C \sum_{k=1}^{\infty} 2^{-k\delta} \left(\frac{1}{|2^{k+1}B|^{1+\beta(s\tau)'}} \int_{2^{k+1}B} |b(y) - b_{2^{k+1}B}|^{(s\tau)'} dy \right)^{1/(s\tau)'} \\ \times \left(\frac{1}{|2^{k+1}B|^{1-\beta s\tau}} \int_{2^{k+1}B} |T_{j,2}f(y)|^{s\tau} dy \right)^{1/s\tau} \\ \leq C \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

From Lemma 2.3 and Hölder's inequality, it follows that

$$H_{2} \leq C \|b\|_{\Lambda_{\mathcal{L}}^{\beta}} \sum_{k=1}^{\infty} k 2^{-k\delta} \frac{1}{|2^{k+1}B|^{1-\beta}} \int_{2^{k+1}B} |T_{j,2}f(y)| dy$$

$$\leq C \|b\|_{\Lambda_{\mathcal{L}}^{\beta}} \sum_{k=1}^{\infty} k 2^{-k\delta} \left(\frac{1}{|2^{k+1}B|^{1-\beta s\tau}} \int_{2^{k+1}B} |T_{j,2}f(y)|^{s\tau} dy \right)^{\frac{1}{s\tau}}$$

$$\leq C \|b\|_{\Lambda_{\mathcal{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

Thus

$$I_2 \le C \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

So when $T_{j,1} = \nabla(-\triangle + V)^{-1/2}$, we conclude that

$$\frac{1}{|B|} \int_{B} |T_{j,1} M_{(b-b_B)} T_{j,2} f(y) - (T_{j,1} M_{(b-b_B)} T_{j,2} f)_{B} |dy \le C \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2} f)(x).$$

If $T_{i,1} = \pm I$, it is obvious that

$$\frac{2}{|B|} \int_{B} |T_{j,1} M_{(b-b_B)\chi_{R^n \setminus 2B}} T_{j,2} f(y)| dy = 0.$$

Thus using the above formula and Hölder's inequality, we conclude

$$\begin{split} &\frac{1}{|B|} \int_{B} |T_{j,1} M_{(b-b_B)} T_{j,2} f(y) - (T_{j,1} M_{(b-b_B)} T_{j,2} f)_{B} |dy \\ & \leq & \frac{2}{|B|} \int_{B} |T_{j,1} M_{(b-b_B)\chi_{2B}} T_{j,2} f(y) |dy \\ & \leq & C \bigg(\frac{1}{|B|^{1+\beta(s\tau)'}} \int_{B} |b(y) - b_B|^{(s\tau)'} dy \bigg)^{\frac{1}{(s\tau)'}} \bigg(\frac{1}{|B|^{1-\beta s\tau}} \int_{B} |T_{j,2} f(y)|^{s\tau} dy \bigg)^{\frac{1}{s\tau}} \\ & \leq & C ||b||_{\Lambda_{\mathfrak{g}}^{\beta}} M_{s\tau,n\beta} (T_{j,2} f)(x). \end{split}$$

Thus for $0 < r_0 < \rho(x)$, we conclude that

$$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x) \leq C \sum_{j=1}^{m} \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

Case II When $r_0 > \rho(x)$, we have

$$\frac{1}{|B|} \int_{B} |\Theta^{b} f(y)| dy \leq \sum_{i=1}^{m} \left(\frac{1}{|B|} \int_{B} |T_{j,1} M_{b\chi_{2B}} T_{j,2} f(y)| dy + \frac{1}{|B|} \int_{B} |T_{j,1} M_{b\chi_{R^{n} \setminus 2B}} T_{j,2} f(y)| dy \right).$$

If $T_{j,1} = \nabla (-\triangle + V)^{-1/2}$, then for $1 < \tau < \infty$ and $1 < s < p_0$ are as in Theorem 2.1, we have

$$\frac{1}{|B|} \int_{B} |T_{j,1} M_{b\chi_{2B}} T_{j,2} f(y)| dy
\leq C \left(\frac{1}{|B|} \int_{B} |T_{j,1} b\chi_{2B} T_{j,2} f(y)|^{s} dy \right)^{\frac{1}{s}}
\leq \left(\frac{1}{|B|} \int_{2B} |b(y)|^{s} |T_{j,2} f(y)|^{s} dy \right)^{\frac{1}{s}}
\leq C \left(\frac{1}{|2B|^{1+\beta s\tau'}} \int_{2B} |b(y)|^{s\tau'} dy \right)^{\frac{1}{s\tau'}} \left(\frac{1}{|2B|^{1-\beta s\tau}} \int_{2B} |T_{j,2} f(y)|^{s\tau} dy \right)^{\frac{1}{s\tau}}
\leq C \|b\|_{\Lambda_{\mathfrak{g}}^{\beta}} M_{s\tau,n\beta} (T_{j,2} f)(x).$$

Since when $y \in 2B$ and $z \in 2^{k+1}B \setminus 2^k B$, we have $|x-z| \sim |y-z|$. Then taking s, τ as above, we get

$$|T_{j,1}M_{b\chi_{R^{n}\backslash 2B}}T_{j,2}f(y)| \leq \int_{(2B)^{c}} |b(z)||T_{j,2}f(z)||K(y,z)|dz$$

$$\leq C \sum_{k=1}^{\infty} \int_{2^{k}r_{0}<|z-x|\leq 2^{k+1}r_{0}} \frac{C_{i}}{\{1+|z-x|m(x,V)\}^{i}|z-x|^{n}} |b(z)||T_{j,2}f(z)|dz$$

$$\leq C \sum_{k=1}^{\infty} \frac{1}{2^{ki}} \left(\frac{1}{|2^{k+1}B|^{1+\beta(s\tau)'}} \int_{2^{k+1}B} |b(y)|^{(s\tau)'}dy\right)^{1/(s\tau)'}$$

$$\left(\frac{1}{|2^{k+1}B|^{1-\beta s\tau}} \int_{2^{k+1}B} |T_{j,2}f(y)|^{s\tau}dy\right)^{1/s\tau}$$

$$\leq C ||b||_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

No. 2

$$\frac{1}{|B|} \int_{B} |T_{j,1} M_{b\chi_{R^n \setminus 2B}} T_{j,2} f(y)| dy \le C \|b\|_{\Lambda^{\beta}_{\mathfrak{L}}} M_{s\tau,n\beta}(T_{j,2} f)(x).$$

If $T_{j,1} = \pm I$, then by Hölder's inequality, we obtain

$$\begin{split} & \frac{1}{|B|} \int_{B} |T_{j,1} M_{b\chi_{2B}} T_{j,2} f(y)| dy \\ & \leq & C \bigg(\frac{1}{|B|^{1+\beta(s\tau)'}} \int_{B} |b(y)|^{(s\tau)'} dy \bigg)^{\frac{1}{(s\tau)'}} \bigg(\frac{1}{|B|^{1-\beta s\tau}} \int_{B} |T_{j,2} f(y)|^{s\tau} dy \bigg)^{\frac{1}{s\tau}} \\ & \leq & C \|b\|_{\Lambda_{\mathfrak{p}}^{\beta}} M_{s\tau,n\beta} (T_{j,2} f)(x). \end{split}$$

And

$$\frac{1}{|B|} \int_{R} |T_{j,1} M_{b\chi_{R^n \setminus 2B}} T_{j,2}(f)(y)| dy = 0.$$

Thus for $r_0 > \rho(x)$,

$$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x) \leq C \sum_{j=1}^{m} \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

So whenever $0 < r_0 < \rho(x)$ or $r_0 > \rho(x)$, we have

$$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x) \leq C \sum_{j=1}^{m} \|b\|_{\Lambda_{\mathfrak{L}}^{\beta}} M_{s\tau,n\beta}(T_{j,2}f)(x).$$

Now, let us turn to prove Theorem 2.2.

Let s, τ be as in Theorem 2.1 and satisfy $1 < s\tau < p$. Then applying Theorem 2.1, Lemma 2.1 and Lemma 2.2, we know that

$$\|\Theta^{b}f\|_{L^{p}} \leq C\|M_{\mathfrak{L}}^{\#}(\Theta^{b}f)\|_{L^{p}} \leq C\sum_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|M_{s\tau,n\beta}(T_{j,2}f)\|_{L^{p}}$$

$$\leq C\sum_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|T_{j,2}f\|_{L^{r}} \leq C\sum_{j=1}^{m}\|b\|_{\Lambda_{\mathfrak{L}}^{\beta}}\|f\|_{L^{r}}.$$

Thus we complete the proof of Theorems 2.1–2.1.

4 Proof of Theorem 2.3

It is obvious that $\Lambda_{\mathfrak{L}}^0 = BMO_{\mathfrak{L}}$. Thus from the proof of Theorem 2.1, we have

$$M_{\mathfrak{L}}^{\#}(\Theta^{b}f)(x) \leq C \sum_{j=1}^{m} \|b\|_{\mathrm{BMO}_{\mathfrak{L}}} M_{s\tau}(T_{j,2}f)(x).$$

Since $M_{s\tau}$ is boundedness on $L^p(\mathbb{R}^n)$, then

$$\|\Theta^b f\|_{L^p} \leq C \|M_{\mathfrak{L}}^{\#}(\Theta^b f)\|_{L^p} \leq C \sum_{i=1}^m \|b\|_{\mathrm{BMO}_{\mathfrak{L}}} \|M_{s\tau}(T_{j,2}f)\|_{L^p} \leq C \sum_{i=1}^m \|b\|_{\mathrm{BMO}_{\mathfrak{L}}} \|f\|_{L^p}.$$

Therefore, we complete the proof of Theorem 2.3.

References

- [1] Fefferman C. The uncertainty principle[J]. Bull. Amer. Math. Soc., 1983, 9: 129–206.
- [2] Shen Z. L^p estimates for Schrödinger operators with certain potentials[J]. Ann. Inst. Fourier, 1995, 45(2): 513–546.
- [3] Zhong J. Harmonic analysis for some Schrödinger type operators[D]. New Jersey: Princeton Univ., 1993.
- [4] Guo Z, Li P, Peng L. L^p boundedness of commutators of Riesz transforms associated to Schrödinger operator[J]. J. Math. Anal. Appl., 2008, 341: 421–32.
- [5] Liu Y. Weighted L^p boundedness of commutators of Schrödinger type operators[J]. Acta Math. Sinica (Chinese Series), 2009, 6: 1091–1100.
- [6] Bongioanni B, Harboure E, Salinas O. Commutators of Riesz transforms related to Schrödinger operators[J]. J. Fourier Anal. Appl., 2011, 17: 115–134.
- [7] Chu T. Boundedness of commutators associated with schrödinger operator and fourier multiplier[D]. Changsha: Hunan Univ., 2006.
- [8] Mo H, Zhou H, Yu D. Boundedness of commutators generated by the Campanato-type functions and Riesz transform associated with Schrödinger operators[J]. Comm. Math. Res., accepted.
- [9] Lu S, Mo H. Toeplitz type operators on Lebesgue spaces [J]. Acta Math. Scientia, 2009, 29: 140–150.
- [10] Zhang L, Zheng Q. Boundedness of commutators for singular integral operators with oscillating kernels on weighted Morrey spaces[J]. J. Math., 2014, 34(4): 684–690.
- [11] Huang C, Liu L. Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator[J]. Publ. Inst. Math., 2012, 92(106): 165–176.
- [12] Jiang Y. Some properties of Riesz potential associated with Schrödinger operators[J]. Appl. Math. J. Chineses Univ., 2012, 7(1): 59–68.
- [13] Yang D, Zhou Y. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators[J]. Potential Anal., 2009, 30: 271–300.
- [14] Chanillo S. A note on commutators[J]. Indiana Univ. Math. J., 1982, 31: 7–16.

由Campanato 型函数和与薛定谔算子相关的Riesz变换生成的 Toeplitz算子的有界性

默会霞,余东艳,隋鑫

(北京邮电大学理学院,北京 100876)

摘要: 本文研究了由 Campanato 型函数及与 Schrödinger 算子相关的 Riesz 变换生成的 Toeplitz 算子的有界性. 利用 Sharp 极大函数估计得到了 Toeplitz 算子 Θ^b 在 Lebesgue空间的有界性, 拓广了已有交换子的结果.

关键词: 交换子; Campanato 型函数; Riesz 变换; Schrödinger 算子

MR(2010)主题分类号: 42B20; 42B30; 42B35 中图分类号: O174.2