首页 | 官方网站   微博 | 高级检索  
     


A Novel Kinetic Approach for Photocatalytic Degradation of Azo Dye with CdS and Ag/CdS Nanoparticles Fixed on a Cement Bed in a Continuous‐Flow Photoreactor
Authors:Narges Elmi Fard  Reza Fazaeli
Affiliation:1. Department of Chemistry, Faculty of science, East Tehran Branch, Islamic Azad University, Tehran, Iran;2. Department of Chemical engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:Azo dyes are one of the synthetic dyes that have been used in many textile industries. Azo dye and their intermediate products are toxic, carcinogenic, and mutagenic to aquatic life. Removal of azo dyes is one of the main challenges before releasing the wastes discharged by textile industries. Photocatalytic degradation of azo dyes by nanoparticles is one of the environment‐friendly methods used for the removal of dyes from textile effluents. Therefore, this study focused on degradation of azo dye, Direct Red 264. Photocatalytic degradation of DR 264 azo dye was investigated using CdS and Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor under UV‐C exposure. The effect of the parameters of type and mass of catalyst, temperature, flow rate, dye concentration, and light intensity were evaluated for azo dye removal. Under optimal conditions, photocatalytic degradation of DR 264 azo dye using Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor obtained an efficiency of 99.99%. A developed kinetic model was proposed based on the intrinsic elementary reactions. The proposed model is in a good agreement with the Langmuir–Hinshelwood (L–H) equation. The pseudo–steady‐state approximation has considered for the concentration of hydroxyl radicals associated with the L–H model under certain conditions and explains consistently the dependence of the apparent kinetic parameter, kobs (the reaction rate constant), and KR (the adsorption equilibrium constant) with the light intensity. Based on the model, kobs for Ag/CdS was greater than the CdS nanoparticles.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号