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s-REGULAR DIHEDRAL COVERINGS OF THE
COMPLETE GRAPH OF ORDER 4∗∗∗
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Abstract

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs.
An infinite family of cubic 1-regular graphs was constructed in [7] as cyclic coverings of
the three-dimensional Hypercube, and a classification of all s-regular cyclic coverings
of the complete bipartite graph of order 6 was given in [8] for each s ≥ 1, whose fibre-
preserving automorphism subgroups act arc-transitively. In this paper, the authors
classify all s-regular dihedral coverings of the complete graph of order 4 for each s ≥ 1,
whose fibre-preserving automorphism subgroups act arc-transitively. As a result, a new
infinite family of cubic 1-regular graphs is constructed.
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§ 1 . Introduction

For a finite, simple, and undirected graph X, every edge of X gives rise to a pair of
opposite arcs, and we denote by V (X), E(X), A(X) and Aut(X) the vertex set, the edge
set, the arc set and the automorphism group of X, respectively. The neighborhood of a
vertex v ∈ V (X), denoted by N(v), is the set of vertices adjacent to v. Let a group G act
on a set Ω, and let α ∈ Ω. We denote by Gα the stabilizer of α in G, that is, the subgroup
of G fixing α. The group G is said to be semiregular if Gα = 1 for each α ∈ Ω, and regular if
G is semiregular and transitive on Ω. A graph X̃ is called a covering of X with a projection
p : X̃ → X, if p is a surjection from V (X̃) to V (X) such that p|N(ṽ) : N(ṽ) → N(v) is a
bijection for any vertex v ∈ V (X) and ṽ ∈ p−1(v). The graph X̃ is also called the covering
graph and X is the base graph. A covering X̃ of X with a projection p is said to be regular
(or K-covering) if there is a semiregular subgroup K of the automorphism group Aut(X̃)
such that the graph X is isomorphic to the quotient graph X̃/K, say by h, and the quotient
map X̃ → X̃/K is the composition ph of p and h (for the purpose of this paper, all functions

Manuscript received March 3, 2003.
∗Department of Mathematics, Northern Jiaotong University, Beijing 100044, China.
E-mail: yqfeng@center.njtu.edu.cn

∗∗Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology,
Pohang, 790–784, Korea. E-mail: jinkwak@postech.ac.kr

∗∗∗Project supported by the Excellent Young Teachers Program of the Ministry of Education of China,
the National Natural Science Foundation of China, the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, the Ministry of Education of China and the Com2MaC-KOSEF in Korea.



58 FENG Y. Q. & J. H. KWAK

are composed from left to right). If K is cyclic, elementary abelian or dihedral then X̃ is
called a cyclic, an elementary abelian or a dihedral covering of X respectively, and if X̃ is
connected then K is called the covering transformation group. The fibre of an edge or a
vertex is its preimage under p. An automorphism of X̃ is said to be fibre-preserving if it
maps a fibre to a fibre, while an element of the covering transformation group fixes each
fibre setwise.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of X
such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i < s. A graph X is said
to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in X. In particular, 0-arc-
transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A
symmetric graph X is said to be s-regular if the automorphism group Aut(X) acts regularly
on the set of s-arcs in X. Tutte [22, 23] showed that every finite cubic symmetric graph is
s-regular for some s, and this s should be at most five. A subgroup of the automorphism
group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph.

Djoković and Miller [5] constructed an infinite family of cubic 2-regular graphs, and
Conder and Praeger [4] constructed two infinite families of cubic s-regular graphs for s = 2
or 4. Several different types of infinite families of tetravalent 1-regular graphs have been
constructed in [14, 16, 21]. The first cubic 1-regular graph was constructed by Frucht [10]
and later Miller [20] constructed an infinite family of cubic 1-regular graphs of order 2p,
where p ≥ 13 is a prime congruent to 1 modulo 3. By Cheng and Oxley’s classification of
symmetric graphs of order 2p (see [2]), Miller’s construction is actually the all cubic 1-regular
graphs of order 2p. By using the Marušič and Xu’s results in [19], Miller’s construction can
be generalized to graphs of order 2n, where n ≥ 13 is odd such that 3 divides ϕ(n), the
Euler function (see [1, 18]). It may be shown that all cubic 1-regular Cayley graphs on
the dihedral groups (see [18]) are exactly those graphs generalized by Miller’s construction.
Also, as shown in [17] or [18], one can see an importance of a study for cubic 1-regular graphs
in connection with chiral (that is regular and irreflexible) maps on a surface by means of
tetravalent half-transitive graphs or in connection with symmetries of hexagonal molecular
graphs on the torus.

Recently, regular coverings of a graph have received considerable attention (see [6–
9, 15]). An infinite family of 1-regular cyclic covering of the three-dimensional Hypercube
was constructed in [7] and a classification of s-regular cyclic coverings of the complete bi-
partite graph K3,3 was given in [8] for each s ≥ 1, whose fibre-preserving automorphism
subgroups act arc-transitively. However, classifications of all s-regular cyclic or elementary
abelian coverings of the complete graph K4 can be easily obtained by a method similar to
this paper. Actually, such classifications were shown in [9] in a much extended family. In this
paper, we classify s-regular dihedral coverings of K4, whose fibre-preserving automorphism
subgroups act arc-transitively. As a result, an infinite family of cubic 1-regular graphs is
constructed, which contains those cubic 1-regular graphs constructed in [7] as a subfamily.
This new family of cubic 1-regular graphs has order 8n such that n divides k2 − k + 1 for
3 ≤ k ≤ n − 2. Following D. Marus̆ic̆ and T. Pisanski’s classification of cubic one-regular
Cayley graphs on the dihedral groups in [18], each graph in this family is not a Cayley graph
on a dihedral group and so not a metacirculant graph in [ 1 ], so that it cannot belong to
any family discussed in the previous paragraph.

Let k and n be non-negative integers. Let Zn denote the cyclic group of order n and
D2n the dihedral group of order 2n. Set

D2n = 〈a, b | a2 = bn = 1, ba = b−1〉

and denote by {w,x,y, z} the vertex set of K4. For 2 ≤ k ≤ n− 1, the graph DK(k, 2n) is
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defined to have vertex set

V (DK(k, 2n)) = {w,x,y, z} ×D2n

and edge set

E(DK(k, 2n)) = {((w, c)(x, c)), ((w, c)(y, c)), ((w, c)(z, c)),

((x, c)(y, ac)), ((x, c)(z, abkc)), ((y, c), (z, abc)) | c ∈ D2n}.
(1.1)

The following is the main result of this paper.

Theorem 1.1. Let X̃ be a connected D2n-covering (n ≥ 3) of the complete graph
K4, whose fibre-preserving subgroup is arc-transitive. Then X̃ is 1-regular or 2-regular.
Furthermore, X̃ is 1-regular if and only if X̃ is isomorphic to one of DK(k, 2n) for 3 ≤
k ≤ n − 2 satisfying n | (k2 − k + 1), and X̃ is 2-regular if and only if X̃ is isomorphic to
DK(2, 6).

§ 2 . Voltage Graphs and Lifting Problems

Let X be a graph and K a finite group. By a−1, we mean the reverse arc to an arc
a. A voltage assignment (or, K-voltage assignment) of X is a function φ : A(X) → K

with the property that φ(a−1) = φ(a)−1 for each arc a ∈ A(X). The values of φ are called
voltages, and K is the voltage group. The graph X×φ K derived from a voltage assignment
φ : A(X) → K has vertex set V (X) ×K and edge set E(X) ×K, so that an edge (e, g) of
X ×φ K joins a vertex (u, g) to (v, φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K, where e = uv.

Clearly, the derived graph X×φK is a covering of X with the first coordinate projection
p : X ×φ K → X, which is called the natural projection. By defining (u, g′)g := (u, g′g) for
any g ∈ K and (u, g′) ∈ V (X ×φ K), K can be identified with a subgroup of Aut(X ×φ K)
acting semiregularly on V (X ×φ K). Therefore, X ×φ K can be viewed as a K-covering.
Conversely, each regular covering X̃ of X with the covering transformation group K can be
described as a derived graph X ×φ K. Given a spanning tree T of the graph X, a voltage
assignment φ is said to be T -reduced if the voltages on the tree arcs are the identity. Gross
and Tucker [11] showed that every regular covering X̃ of a graph X can be derived from a
T -reduced voltage assignment φ with respect to an arbitrary fixed spanning tree T of X.
It is clear that if φ is reduced, the derived graph X ×φ K is connected if and only if the
voltages on the cotree arcs generate the voltage group K.

Let X̃ be a K-covering of X with a projection p. If α ∈ Aut(X) and α̃ ∈ Aut(X̃)
satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃. Concepts such as a lift of a
subgroup of Aut(X) and the projection of a subgroup of Aut(X̃) are self-explanatory. The
lifts and the projections of such subgroups are of course subgroups in Aut(X̃) and Aut(X),
respectively. The problem whether an automorphism α of X lifts or not can be grasped in
terms of a voltage as follows. Observe that a voltage assignment on arcs extends to a voltage
assignment on walks in a natural way. Given α ∈ Aut(X), we define a function α from the
set of voltages of fundamental closed walks based at a fixed vertex v ∈ V (X) to the voltage
group K by

(φ(C))α = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are the voltages
of C and Cα, respectively. Note that if K is abelian, α does not depend on the choice of the
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base vertex, and the fundamental closed walks at v can be substituted by the fundamental
cycles generated by the cotree arcs of X.

The next proposition is a special case of Theorem 4.2 in [13].

Proposition 2.1. Let X ×φ K → X be a connected K-covering. Then, an automor-
phism α of X lifts if and only if α extends to an automorphism of K.

Two coverings X̃1 and X̃2 of X with projections p1 and p2 respectively, are said to be
isomorphic if there exists a graph isomorphism α̃ : X̃1 → X̃2 such that α̃p2 = p1.

Proposition 2.2. (cf. [12]) Two connected regular coverings X ×φ K and X ×ψ K,
where φ and ψ are T -reduced, are isomorphic if and only if there exists an automorphism
σ ∈ Aut(K) such that φ(u, v)σ = ψ(u, v) for any cotree arc (u, v) of X.

§ 3 . Proof of Theorem 1.1

Note that the dihedral group D2n = {a, b | a2 = bn = 1, ba = b−1} is not abelian if
n ≥ 3. As before, let V (K4) = {w,x,y, z}. Let X̃ = K4 ×φ D2n be a covering graph of
the complete graph K4 satisfying the hypotheses in Theorem 1.1, where φ is a T -reduced
D2n-voltage assignment on a spanning tree T as illustrated by dark lines in Fig. 1, and
for the cotree arcs (x,y), (y, z) and (z,x) we assign voltages z1, z2 and z3 respectively.
Since K4 ×φ D2n is assumed to be connected, we have 〈z1, z2, z3〉 = D2n. Clearly, the
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Fig. 1. The complete graph K4 with voltage assignment φ

automorphism of K4 is the symmetric group S4 of degree 4, which is 2-regular. It is well-
known that S4 has only one 1-regular subgroup, that is, the alternating group A4. Let

α = (w x)(y z), β = (x y z), γ = (w x).

Then, α, β and γ are automorphisms of K4, and we have α, β ∈ A4 and γ 6∈ A4. By the
hypotheses, the fibre-preserving subgroup, say L̃, of the covering graph K4 ×φ D2n acts
arc-transitively on K4 ×φ D2n. Hence, the projection, say L, of L̃ is arc-transitive on the
base graph K4. It follows that L = A4 or S4, implying that α, β ∈ L. Thus, α and β lift.

By i1i2 · · · is, we denote a directed cycle whose vertices are i1, i2, · · · , is in a consecutive
order. There are three fundamental cycles wxy, wyz and wzx in K4, which are generated
by the three cotree arcs (x,y), (y, z) and (z,x), respectively. Each cycle maps to a cycle of
same length under the actions of α, β and γ. We list all these cycles and their voltages in
Table 1, in which C denotes a fundamental cycle of K4 and φ(C) denotes the voltage on the
cycle C.



s-REGULAR DIHEDRAL COVERINGS OF THE COMPLETE GRAPH OF ORDER 4 61

C φ(C) Cα φ(Cα) Cβ φ(Cβ) Cγ φ(Cγ)
wxy z1 xwz z3 wyz z2 xwy z−1

1

wyz z2 xzy z−1
1 z−1

2 z−1
3 wzx z3 xyz z3z2z1

wzx z3 xyw z1 wxy z1 xzw z−1
3

Table 1. Fundamental cycles and their images with corresponding voltages on K4

Consider the mapping α from the set of voltages of the three fundamental cycles of K4 to
the voltage group K, defined by

φ(C)α = φ(Cα),

where C ranges over the three fundamental cycles. From Table 1, one can see that

zα
1 = z3, zα

2 = z−1
1 z−1

2 z−1
3 , zα

3 = z1.

(In the rest of the paper, all arithmetic operations are to be taken modulo n if at least
one argument comes from the group Zn and the symbol mod n is always omitted. This
should cause no confusion). In a similar way, β and γ can be defined and their values can
be found easily from Table 1. Since α, β ∈ L, by Proposition 2.1, α and β can be extended
to automorphisms of K, say α∗ and β∗, respectively. From Table 1, zβ∗

1 = z2 and zβ∗
2 = z3.

This implies that z1, z2 and z3 have the same order in the group D2n.
Let Z(D2n) denote the center of D2n. An exercise shows that if n is odd Z(D2n) = 1,

and if n is even Z(D2n) ∼= Z2. Since

zβ∗
1 = z2, zβ∗

2 = z3, zβ∗
3 = z1

and
〈z1, z2, z3〉 = D2n,

we have that z1, z2, z3 are involutions, but neither in the center of D2n. By Proposition 2.2,
one may assume that z1 = a, z2 = abi and z3 = abj . It follows that

aβ∗ = abi, (abi)β∗ = abj , (abj)β∗ = a.

Thus
(bj)β∗ = (aabj)β∗ = aβ∗(abj)β∗ = abia = b−i,

implying that bi and bj have the same order. As

〈a, abi, abj〉 = D2n, 〈bi, bj〉 = 〈b〉,

so that each of bi and bj generates 〈b〉. This implies that (i, n) = 1 and (j, n) = 1. Hence,
a 7→ a and bi 7→ b can deduce an automorphism of D2n. Again by Proposition 2.2, one may
assume that z1 = a, z2 = ab and z3 = abk for 2 ≤ k < n. Since

zβ∗
1 = z2, zβ∗

2 = z3, zβ∗
3 = z1,

one can deduce k2 − k + 1 = 0.
If k = 2 then 3 = 0, implying n = 3. In this case, one can easily show that α, β,

γ can be extended to automorphisms of D2n and by Proposition 2.1, α, β, γ lift. By [3],
there exists only one cubic symmetric graph of order 24, which is 2-regular. Thus, X̃ is
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2-regular. By the equation (1.1), X̃ ∼= DK(2, 6). If k = n− 1, then we also have 3 = 0 and
so X̃ ∼= DK(2, 6).

As the remaining case, let 3 ≤ k ≤ n− 2 and k2 − k + 1 = 0. In this case, the covering
graph K4 ×φ D2n is isomorphic to the graph DK(k, 2n) in the equation (1.1), where the
voltage assignment φ is illustrated in Fig. 1 with the values z1 = a, z2 = ab and z3 = abk

in D2n. To complete the proof, it suffices to show that K4 ×φ D2n is 1-regular. Note that
k2 − k + 1 = 0 implies that (k, n) = 1 and (k − 1, n) = 1. From Table 1, one can show that
α and β can be extended to automorphisms of D2n induced by a 7→ abk and b 7→ b−1, and
a 7→ ab and b 7→ bk−1, respectively. By Proposition 2.1, α and β lift to automorphisms of
K4 ×φ D2n, which means that K4 ×φ D2n is arc-transitive. Let A = Aut(K4 ×φ D2n).

To show the 1-regularity of K4 ×φ D2n, it suffices to prove that the stabilizer of a
given arc of K4 ×φ D2n in A is trivial. For simplicity, we denote by vc the vertex (v, c) of
K4 ×φ D2n where v ∈ {w,x,y, z} and c ∈ D2n, and by A{w1,x1} the subgroup of A fixing
the vertices w1 and x1. By the arc-transitivity of X̃, we only need to prove A{w1,x1} = 1.
For u ∈ V (K4 ×φ D2n), let Ni(u) = {v ∈ V (K4 ×φ D2n) | d(u, v) = i}, where i is a non-
negative integer and d(u, v) is the distance between u and v. Depict the induced subgraph
〈 4⋃

i=0

Ni(w1)
〉

of
4⋃

i=0

Ni(w1) in K4 ×φ D2n, as shown in Fig. 2.
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Fig. 2. Induced subgraph of
4⋃

i=0

Ni(w1) in K4 ×φ D2n

Note that k2−k +1 = 0 implies that n is odd. Since 3 ≤ k ≤ n−2 and k2−k +1 = 0,
we have

n ≥ 5, 2k 6= 0, 2(k − 1) 6= 0, 2k − 1 6= 0.

With these inequalities, one can show that all vertices in Fig. 2 are distinct. For the sake
of convenience, we abuse the notation i1i2 · · · is for an undirected cycle which has vertices
i1, i2, · · · , is, and a cycle always means an undirected one from now on. By examining Fig. 2,
one can deduce that there are exactly three cycles of length 6 passing through the vertex
w1 in K4 ×φ D2n:

w1x1yawaxay1, w1x1zabkwabkxabkz1, w1y1zabwabyabz1.

Of these cycles, two of them pass through the edge w1x1. By the arc-transitivity of K4 ×φ

D2n, there are exactly three cycles of length 6 passing through any vertex of K4 ×φ D2n

and there are exactly two cycles of length 6 passing through any edge of K4 ×φ D2n. For
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later use, we choose two cycles of length 6 passing through wc or xc for each c ∈ D2n,
respectively: say

Cw(c) = wcyczabcwabcyabczc,

Cx(c) = xcyaczb−1cxabk−1cybk−1czabkc.

Now, we claim that A{w1,x1} fixes y1 and z1. Let ω ∈ A{w1,x1}.
First, let us assume that ω fixes wb`(k−2) and xb`(k−2) . Consider the cycle Cx(b`(k−2)):

Cx(b`(k−2)) = xb`(k−2)yab`(k−2)zb`(k−2)−1xab(`+1)(k−2)+1yb(`+1)(k−2)+1zab`(k−2)+k .

This is the only cycle of length 6 in K4 ×φ D2n which passes through the vertex xb`(k−2) ,
but not the edge xb`(k−2)wb`(k−2) . Therefore, ω fixes the cycle Cx(b`(k−2)) setwise and con-
sequently, it fixes xab(`+1)(k−2)+1 , the opposite of the vertex xb`(k−2) in the cycle Cx(b`(k−1)).
Since the valency of K4×φD2n is 3, there is only one vertex which is adjacent to xab(`+1)(k−2)+1 ,
but not on the cycle Cx(b`(k−2)). It is actually the vertex wab(`+1)(k−2)+1 . Thus, ω also fixes
wab(`+1)(k−2)+1 . Consequently, ω fixes two vertices wab(`+1)(k−2)+1 and xab(`+1)(k−2)+1 . Simi-
larly, by considering the following cycle

Cw(ab(`+1)(k−2)+1)
= wab(`+1)(k−2)+1yab(`+1)(k−2)+1zb(`+1)(k−2)wb(`+1)(k−2)yb(`+1)(k−2)zab(`+1)(k−2)+1 ,

one can conclude that ω fixes wb(`+1)(k−2) and xb(`+1)(k−2) .
Now, by using induction on ` with the hypothesis that ω fixes w1 and x1, one can

obtain that ω fixes wb`(k−2) and xb`(k−2) for all non-negative integers `. Clearly, this is also
true for all integers ` because b has order n.

Let (k−2, n) = r. Then r divides (k−2)2 = k2−4k+4. Since r | n and n | (k2−k+1),
r divides

(k2 − k + 1)− (k2 − 4k + 4) = 3k − 3 = 3(k − 1).

Note that n | (k2 − k + 1) implies (n, k − 1) = 1. As r | n, (r, k − 1) = 1. Thus, r | 3(k − 1)
implies r | 3, namely (k − 2, n) = 1 or 3.

Case I. Let (k−2, n) = 1. Then, there exist integers s and t such that s(k−2)+tn = 1.
Thus, ω fixes xbs(k−2) = xb1−tn = xb. On the other hand, since ω fixes w1 and x1, it also
fixes {y1, z1} setwise. As d(xb, z1) = 2 and d(xb,y1) 6= 2 (see Fig. 2), it follows that ω fixes
y1 and z1 pointwise.

Case II. Let (k−2, n) = 3. Then, there exist integers s and t such that s(k−2)+tn = 3.
It follows that ω fixes xb(s+1)(k−2) = xbk+1 . From Fig. 2, one can see that

N4(w1) = {za,wb−1 ,xabk−1 ,wbk−1 ,yabk ,wb−k ,yab1−k ,wb1−k ,xab,wb, zabk+1 ,wbk},
N3(xbk+1) = {xabk+1 , zabk+2 ,yabk+2 ,xab2k+1 , zabk+1 ,wbk ,xab2k ,wb2k ,yab2k+1}.

Since 3 ≤ k ≤ n− 2, we have n ≥ 5 and since (k − 2, n) = 3 and n | (k2 − k + 1), it is easy
to show that k + 1 6= 0, k + 2 6= 0, 2k 6= 0, 2k + 1 6= 0, 2k − 1 6= 0, 3k 6= 0 and 3k − 1 6= 0.
With these inequalities, one may obtain that N3(xbk+1) ∩N4(w1) = {wbk , zabk+1}. Since ω
fixes xbk+1 and w1, it fixes {wbk , zabk+1} setwise. However, zabk+1 is on a cycle of length 6
passing through z1, but neither of {wbk , zabk+1} is on a cycle of length 6 passing through y1.
Hence, the condition that ω fixes {y1, z1} setwise implies that it fixes y1 and z1 pointwise.

So far, we have proved that A{w1,x1} fixes y1 and z1. Of the cycles of length 6 passing
through w1, there is only one of them passing through any two vertices of x1, y1 and z1.
Hence, ω fixes the three cycles of length 6 passing through w1 pointwise, which means that
ω fixes all vertices in N2(w1). By the arc-transitivity and the connectivity of K4 ×φ D2n,
we have A{w1,x1} = 1, as required.
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[16] Marušič, D., A family of one-regular graphs of valency 4, Europ. J. Combin., 18(1997), 59–64.

[17] Marušič, D. & Nedela, R., Maps and half-transitive graphs of valency 4, Europ. J. Combin., 19(1998),
345–354.
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