首页 | 官方网站   微博 | 高级检索  
     


Mechanistic Investigation of Catalyst‐Transfer Suzuki–Miyaura Condensation Polymerization of Thiophene–Pyridine Biaryl Monomers with the Aid of Model Reactions
Authors:Yu Tokita  Masaru Katoh  Dr Yoshihiro Ohta  Prof Tsutomu Yokozawa
Affiliation:Department of Material and Life Chemistry, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama, Japan
Abstract:We have investigated the requirements for efficient Pd‐catalyzed Suzuki–Miyaura catalyst‐transfer condensation polymerization (Pd‐CTCP) reactions of 2‐alkoxypropyl‐6‐(5‐bromothiophen‐2‐yl)‐3‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine ( 12 ) as a donor–acceptor (D –A) biaryl monomer. As model reactions, we first carried out the Suzuki–Miyaura coupling reaction of X–Py–Th–X′ (Th=thiophene, Py=pyridine, X, X′=Br or I) 1 with phenylboronic acid ester 2 by using tBu3PPd0 as the catalyst. Monosubstitution with a phenyl group at Th‐I mainly took place in the reaction of Br–Py–Th–I ( 1 b ) with 2 , whereas disubstitution selectively occurred in the reaction of I–Py–Th–Br ( 1 c ) with 2 , indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the Mn of the obtained polymer, as well as the matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra, indicated that Suzuki–Miyaura coupling polymerization of 12 with (o‐tolyl)tBu3PPdBr initiator 13 proceeded in a step‐growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki–Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step‐growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th‐Pd‐Py complex formed by transmetalation of polymer Th–Br with (Pin)B–Py–Th–Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal–arene η2‐coordination for D and A monomers may be needed for CTCP reactions of biaryl D–A monomers.
Keywords:catalyst-transfer condensation polymerization  conjugated polymers  pyridine  Suzuki–  Miyaura coupling reactions  thiophene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号