首页 | 官方网站   微博 | 高级检索  
     

考虑界面接触热阻的一维复合结构的热整流机理
引用本文:赵建宁,刘冬欢,魏东,尚新春.考虑界面接触热阻的一维复合结构的热整流机理[J].物理学报,2020(5):164-173.
作者姓名:赵建宁  刘冬欢  魏东  尚新春
作者单位:北京科技大学数理学院;中国空气动力研究与发展中心计算空气动力研究所
基金项目:国家自然科学基金(批准号:11772045);国家数值风洞工程(批准号:NNW2019ZT2-B04)资助的课题~~
摘    要:建立了考虑变截面、变热导率及界面接触热阻效应的组合热整流结构的温度场及热整流系数的理论模型和有限元解.数值算例证明了本文模型及算法的可靠性,进而通过参数影响研究确定了若干几何及材料参数对结构热整流系数的影响规律,揭示界面接触热阻对热整流效果的影响机理.研究结果表明长度比、截面半径变化率、热导率、边界条件温差和界面接触热阻等因素必须通过优化设计才能得到最大的热整流系数,同时界面接触热阻的引入也为调控热整流系数提供了一条新的途径.

关 键 词:热整流  组合结构  接触热阻

Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance
Zhao Jian-Ning,Liu Dong-Huan,Wei Dong,Shang Xin-Chun.Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance[J].Acta Physica Sinica,2020(5):164-173.
Authors:Zhao Jian-Ning  Liu Dong-Huan  Wei Dong  Shang Xin-Chun
Affiliation:(Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China)
Abstract:Thermal rectification refers to the phenomenon that heat fluxes or equivalent thermal conductivities are different under the same temperature difference when temperature gradient directions are different. The nature of the thermal rectification is that the structure has different effective thermal conductivities in different directions. Most of previous studies focused on thermal rectification of temperature-dependent thermal conductivity materials or variable cross section area structure, and the effect of thermal contact resistance at the interface was investigated very rarely. In the present paper we present the analytical and finite element numerical solution of temperature field and thermal rectification ratios of a composite structure with variable cross section area and thermal conductivity under different interface thermal contact resistances. The prescribed temperature boundary condition is introduced by penalty method, and the temperature jump condition at the interface is implemented by the definition of thermal contact resistance directly. The nonlinear heat conduction problem caused by temperature-dependent thermal conductivity and interface thermal contact resistance is then solved with a direct iteration scheme. Comparisons between experimental results and the present theoretical and numerical results show the feasibility of the proposed model. Then parameter investigations are also conducted to reveal the effect of some key geometric and material parameters. Numerical results show that thermal contact resistance plays an important role in the temperature field and thermal rectification ratio of the two-segment thermal rectifier. With the increase of the length ratio, thermal ratification ratio increases first and decreases then, and the optimal length ratio varies with both thermal contact resistance and cross-section radius change rate of the two segments. In general, the existence of thermal contact resistance can increase the total thermal resistance of the rectifier and magnify the distinction of the heat flux in forward and reverse cases.However, if the thermal contact resistance is too large, this distinction will decrease and correspondingly the thermal rectification ratio becomes low. With the increase of the boundary temperature difference, thermal rectification ratio increases due to the effect of temperature-dependent thermal conductivity. In the present study, we propose a theoretical and numerical approach to designing and optimizing the length ratio, crosssection radius change rate, thermal conductivity, boundary temperature difference and interface thermal contact resistance to obtain the maximal thermal rectification ratio of a bi-segment thermal rectifier, as well as the manipulation of thermal flux in engineering applications.
Keywords:thermal rectification  composite structure  thermal contact resistance
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号