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Abstract: The aim of this article is to discuss a volume nullification property of the
diffusion process determined by a stochastic differential equation on a manifold. Let
X¢(z) be a diffusion process describing a flow of diffcomorplisius z — X,(z) in a manifold
M, and K be a compact surface in M with positive finite Hausdorff measure. We present
conditions under which the area of X(K) goes to zero almost surely and in moments
as ¢ — oo, in particular, the flow X,(-) asymnptotic nullifies the arc-lenth of oriented
rectifiable arcs r : [0,1} — M.
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1. Introduction

Asymptotic flatness of stochastic flows is an important property. It has been discussed
by many authors, see [2],[6] and [9], etc. Especially, in [1], a volume nullification property
of the n-dimensional singular diffusion process is discussed. Under the manifold setup, in
this paper, we discuss the same kind property of the process X;(z,w) that arises as the
solution of a stochastic differential equations on a manifold.

Consider the stochastic differential equation (SDE) on an m-dimensional manifold M:

{ dX,,(1) = Thet Aa(Xul1)) 0 dW(t) + Ao( Xu(£))dt, a
X.(0) =z,

where Ap, A1,-+-,Aq € X(M) (the space of tangent vector fields ), odW" denotes the
stochastic differential in Stratonovich’s sense, and {W*,a = 1,2,---,d} is d-dimensional
standard Brownian motion.
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Now we choose a local coordinate set U 3 z, and assume that U is relatively compact

in M. We then have - 5
A = i;o;%, a=20,1,---,d

extending o', to a smooth function &' with compact support in R™.
Consider the SDE in R™:

{ dX(t) = S, Ga(Xe) 0o dWH(t) + G6(Xw(t))dt, @
Xy =z,

which is equivalent to the following one

d
Ga(Xy) - AW (1) + (50 + % S
1 a=1

, (3)

where -dW“(t) denotes the differential in It6’s sense.
From the assumption we have made above, we can see that the coefficient of (3) satisfies
(19 Hence the equation (3) has a

Mn.

dxi(t) =

8 R

Xo =

the all conditions of existence and uniqueness theorem
unique solution X;(z,w). Let

ny(w) = nf{t > 0, X;(z,w) ¢ U}.
Then we consider the following two cases
1. 7y(w) = oo. This means that the path of X,(z,w) would stay in U forever.
2. 7y(w) < oo. This means that the path would go out of U at some finite time ¢.

Asymptotic flatness of stochastic flows has been well discussed. Especially, in [1], a
volume nullification property of the n-dimensional singular diffusion process is discussed.
In this paper, we discuss the same kind property of the process X;(z, w) that arises as the
solution of the SDE (1).

First, we know that the flow ¢t — X.(z,w) is a flow of difftcomorphisms z — X7 in
M (see [10]). Let K be a compact surface in M with finite Hausdorff measure (here we
should consider two cases: one is looking K as a subset of a higher dimensional Euclidean
spaceR™ when M is a general manifold,the other is considering K’s Hausdorff measure
as a L"-measurable subset of M when M is a Riemannian manifold with a Riemannian
metric g, where L is the Lebesgue mesure of R") and ¢ : B C R” — K,r < n be its
Lipschitzian parametrization (here we suppose M is metrizable). We can take B := [0,1]".
We present conditions so that the area of (X, o ¢)(B) goes to zero almost surely and in
L? as t — co. In particular, for a rectifiable arc ¢ : [0,1] = M. We get the asymptotic
nullification of the arc length of X,(c). From this we recover the asymptotic flatness of

Xi(=).
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Under the coordinate system of U, the Jacobian matrix of the diffeomorphism z —
Xi(z): Yi(z) := (8;X(2)), by Ité’s formula:

Yiz) = I+ [ Saoh(Xu(@)Yile)aWs + [ ¥ @ue)as, (4)
where ) P
F(X(2)) = 5Bal500h)oA(Xo(2). (5)

Now we will introduce some notations and formulas that would be used in the following.

Let M(;nxm) denote m X m-dimensional matrix, and (-, )(mxm) be the trace norm of
m X m dimensional matrix. Let (-,-), be the norm of a Riemannian manifold M induced
by the Riemannian metric g. The notions of area are from differential geometry and
geometric measure theory.

First of all, let us consider the simplest case: R™ set up. Recall the definition of
r-dimensional Hausdorff measure. For an arbitrary subset B C R™, let §(B) denote the
diameter of B. By f(r) we shall denote the Lebesgue measure of closed unit ball in R",
ie., B(r) = (T(2))/(T(} + 1)). For any subset A C R™, one defines the r-dimensional
Haudorff measure H"(A) as follows: For a small > 0 cover A by countably many subsets
S; with §(S;) < 7, and define

H'(A) := lim inf l)<nz2",@(r)(5(5i))r.

10 ACUS; 6(S;
One can show that, for any positive integer m, H'™ = L™, where L™ is the Lebesgue
measure on R™. To deal with (non smooth) surfaces in R™, one works with Lipschitz
functions f : R™ — R™; If f : R" — R™ is differentiable at a € R", one defines the
k-dimensional Jacobian Ji f(a) of f at a as the maximum k-dimensional volume of the

image under Df(a)(= f (a)) of a unit k-dimensional cube. Note that if k = » = m, then
Jif(a) = | det Df(a)|. Finally, we recall the area formula.

Area Formula: For an £™-measurable set A and Lipschitz functions f : R™ — R™ with
r<m
[ u@ri@ce = [ ¥ @),
R zef~y)
Secondary, we state the result when it comes to a Riemannian manifold without proof.
In this article, we shall consider the case when the manifold has only one coordinate
system. Under the Riemannian metric g we can give a distance p induced by g, i.e.,

plz,y) = inf [ ((t),c(t))gdLe,
ceCl VK
where C! denotes the set of Lipschitzian function ¢ mapping some compact interval K into
M with ¢(inf K) = z,c(sup K) = y. Then M is a metric space with p.
Let H"(B) denote the r-dimensional Hausdorfl measure corresponding to p, where B
is a r-dimensional subset of M and we have an Area on manifold which is similar to that

ofin R™.
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For a £L™-measurable set A and Lipschitz functions f : R™ — M, with » < m, we have
/ La(2)J: f(z)L7(2) = / S La(e)dH(y).
z€f )
Now, there are two lemmas as follows.

Lemma 1 If 7y(w) = 0o, make the assumption (A): There exists a A > 0 and a positive
definite matrix C € M|, xm) such that, for all Z € M{mxm)

CZ1 Ua(x) )(ﬂ'LX'm))2

(cz,{2¥’ z)+a§_jlc (2)Col(2)}2) (mxem) — 22 (CZ, Zymemy
< =MZ, Z) (mxm)-
Let || - |lmxm denote the corresponding norm induced by (-, )(mxm)- Then there exists
a § € [0,1) such that ||Y;(2)||*@~® — 0 exponentially fast in L' and almost surely at
t — o0,

Proof Notice 7y = oo means that the path of solutions of (1) always stay in U. Thus
(U, p,2') is a global coordinate system of U. We can restrict the equation (1) on U, which
has the same solution in the form as that of equation (2) when it is restricted on (U).
Hence the result can be deduced from case in R™. From Theorem 3.2 in (1], the proof is
complete.

Lemma 2 Suppose ny(w) = co. Modify the Assumption (A) as following:
Assumption (B): for some integer | > 1 there exists a A > 0 and a positive definite
matrix C € M(,;,x ) such that for all m x m matrix Z

CZ,0,(2)2) (mxm))’
(CZ,{2b(= +ZC ol a;(.»,,-)}z>(mxm)+2(é_1)2(< <CZ(Z)>(,i(xm) )

< A<Z Z> van

Then ||Y:(2)

|l{mxm) — 0 exponentially fast in L' and almost surely as t — oo.

Proof Similar to the discussion in Lemma 1, it is not difficult to prove the Lemma by
using Theorem 3.4 in [1].

2. Main results

Theorem 1 Let K be a compact r-dimensional surface in U such that 0 < H"(¢(K)) < oo
for some r < 1 < m, where ‘K" is the r-dimensional Hausdorff measure corresponding to
the ordinary metric of R™ and ! is mentioned in Lemma 2. Let v be a Lipschitzian map
from R" to R™, B = ¢! (p(K)). Suppose ry(K,w) = infoex{t : Xe(z) ¢ U} =

Then under the assumption of Lemma 1, Area[(X;(o%)(B)] — 0 in L* and almost surer
exponentially fast as t — oo,

Proof For 1y(w) = oo, we know the equation’s solution only depend on ¢ and b not &
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and b for the path would never go out of U. Then we can use Theorem (3.2) in Kannan’s
paper (1] to obtain the result.

Remark Using ¢ we can get a metric of U induced by the inner product of R™. Then
U can be metric. Under this metric we know that ¢ is a isometric mapping. Hence all
the result of p(K) can be transfered to K C U, i.e., K has the same Hausdorff measure
as ¢(K'), when we treat U as a subset of R™.

From the discussion above, we can see the importance of coordinate system. We can
write Yi(z) only under a definite coordinate, and the form of Y;(z) will be changed if the
coordinate is changed. So, when 7y < oo, we could not discuss the problem in a general
manifold. Now we will consider a Riemannian manifold (M, g), which it has a globally
coordinate. We will consider the nullification property of the equation (1) on (M,g),
corresponding to the Hausdorfl measure induced by g.

Cantan-Hardamard Theorem!® Suppose (M, ¢) is a Riemannian manifold and
1. M is complete.
2. M is simply connected.
3. The section curvature of M is negative, i.e. kxpg < 0.

Then M is diffeomorphism with R™, the diffeomorphism mapping is

exp, : R™ = TL,M - M

with p selected on M arbitrary.

Suppose (M, g) satisfies those conditions in Cantan-Hardamard Theorem. Choose p €
M arbitrary. Then under the assumption in Lemma 1, we know Area[X ;09 toy(B)] — 0
exponentially fast in L! and almost surely as ¢ — oo, and (T,,M,exp;l,:ci) is the normal
coordinate system of M, where {z'} is the classical coordinate system of R™ under this
coordinate, we can write the equation (1) as

dX{ = i 0a(Xe) 0 AW + of(Xi)dt, (6)
Xo = 2o,

and derive that Yi(z¢) = (%(Xf(:co)) as (4). Note that M is a metric space with p,
where p is the distance induced by g.

Lemma 3 Assume that the manifold (M, g) satisfies all assumptions in Lemma 1 and
the conditions in Cartan-Hardmard Theorem. Then

|[Vi(2o) 120 = 0, as t— oo,

where § € [0,1).

Proof Since the manifold (M, g) has a globally coordinate system, we know that there
is a unique formula (6) of SDE(1). So we can see that M is the same as U in Lemma 1,
and hence obtain the lemma.

Lemma 4 Suppose (M, g) is the same as in Lemma 3, and assume that the assumption
(B) in Lemma 2 is satisfied. Then [[Yi(zo)| = 0 as t — o0.
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The proof is as the same as that in Lemma 3.

Theorem 2 Let K bea compact r-dimensional surface in M such that 0 < H}(K) < o0
for some r < I < m, where H7 is the r- -dimensional Hausdorff measure mduced by the
Riemannian metric ¢ and m is the same as in Lemma 4. Let ¥ be a Lipschitzian map
from R™ to M, B = ¢~}(K). Assume that all conditions in Lemma 3 are satisfied. Then
Area[(X, o ¢)(B)] — 0 in L' and almost surely exponentially fast as t — oo.

Proof Let L' be the Lebesgue measure on R”. Then we have
Area(X; 0 (B)) = / card(™t o Xy(y))H (dy)

/ T (Xo(9(w))L7 (du)
< ¢ [ KAV L (du).

where K, is a positive constant independent of u or t. From Lemma 3, the right hand
side of the last inequality goes to zero in L} exponentially fast as ¢ — oo. Similar to 1],
we can prove the almost surely convergence exponentially fast.

Corollary Let ¢ be an oriented rectifiable curve in M. Under the assumption of Theorem
2, we have Arc-length (X;(c)) — in L' and almost surely, exponentially fast as n — oo.

The corollary is the case with r = 1 in Theorem 2.

A general compact manifold M has no globally coordinate system. But every manifold
can be embedded into a higher dimensional Euclidean space. Therefore we can use the
Whitney’s theorem to get a coordinate system covering M.

Consider an m-dimensional manifold M and an SDE on M with the form (1). Then
we can imbed M into R"™ where n > m. So there exists the vector field /io,fil, ‘e ,fid in
R™ with compact support such that 4;(z) = 4;(z),Vz € M. Consider the SDE in R"

{ dX, = Y8 Al(Xp) 0 dWe(2) + Ay(X,)dt,
% ()
0= Zg,

where o € M. We know that (7) has a solution as the same as that for equation (1). Since
the uniqueness of the solution of SDE in R", we can write /ia]M = Ap,a=0,1,---,d as

Z au 823,’

We have the following result.

Theorem 3 Let K be a compact N-dimensional surface in M such that 0 < H"(K) < oo
for some r < I < n, where K" is the r-dimensional Hausdorff measure of K, and K is a

subset of R™. Then Area[(X; 0 ¢)(B)] — 0 in L' and almost surely exponentially fast as
t— .
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