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Abstract

In this note, it is shown that/the monotone reconstruction problem is equi-
valent to that of sorting, in the sense of computational complexity. In particular
from any given sorting algorithm A, an algorithm B for the monotone reconstruc- ’
tion problem can be developed with at most O(m) time and O{m) space cost more
than that used in 4, and vice versa. As a consequence of this result, it is obtai-
ned that the time complexity of the monotone reconsiruction problem of n-ele-

ment random perm utations is O(nlogn).

1

| . Introduction ‘

Let (n)={1,2,+,n}. An repeatable sequence 7:a, a; «eea,, With a,€(n] is calle-
‘dan (m, n) -random pe(mutation if each element of (n]) appears in 7 at least once.
Let S(m,n)‘ be the set of all (m, n)-random permutations. Clearly, S(n, n) is
the set of all n-element permutations without repeatitions. Let P be any givén
set of properties satisfied by a subset of S(m, n), denote the subset by S(m,n;
P), i.e.,

S(m, n; P)={neS(m, n) (z satisfies P} .

The minimal partition problem of random permutations ( which is also called
reconstruction problem, for the sake of simplicity) can be formulated in the fol-
lowing way: for a given set P of properties on $(m, n), VaeS(m, n), find an
element 7'¢S(m, n; P) such that ’ .

1) #’=m,0momy0e0m,, where “o” denotes the juxtaposition operation-,

2) each 7, is a subsequence of =z,

3) {m]1<i<k} is a partition of the set of terms of =,

4) the number k is minimal.

Usually --- 7(i) denotes. the i-th term a, of 7, for 1<i<m.

For example, m=6, n=5,and P is defined as follows. = satisfies P iff for

any i<j, n(i)<n(j); i.e., 7 is monotonic nondecreasing, and such a condition

* Dedicated to Professor L. C. Hsu, on‘the occasion of his 70-th Birthday.
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P is called monotonic coandition. Thus, if P only allows number 2 to repeat in
our permutations, then S(6,5;P)={122345}. Let 7’ be the only sequence 1223
45 in S(6,5;P). Take
'  1=243125¢5(6,5) ; T =1(4)1(5) =125 m,: = 1(1) 1(3) =233
my: =7(2) n(6) =45.
Thus, each 7, is a subsequence of 7, and consider » and 7,,1<i<3 as the
sets of their terms, we have
1=Uj<ics®ir - mm;=0, and
v =momony,= 1(4) 1(5) 1(1)x(3) 1(2) m(6) = 122345.
Note Although both 7, and 7, have a number 2, these two 2’s are different
termjs in 7, namely 7(5) and 7(1). Because of this, we have nN1,=d.
In the past 36 years, the problem of minimal partition of random permuta-
' (13 and the

‘mathematicians in Science Academy of Sinica [2] considered the case that P is

tions has been studied by many authors. For example, Guofeng Li

a monotonic nondecreasing restriction, which is so called ordered condition. In
the,'-spirit of generalizing the ordered condition, Yongjin Zhu and Ruopeng Zhu
studied the problem under the quasi-ordered condition [3], and Kequan Ding wor-
ked on the pseudo-ordered case [4]. On the other hand, people tried the case
with number-grouped qo,ndition, i.e., in 7', all the terms of the same value must
be put tégether. For example, 7’ could be 442311 or 211344 etc. 'In compé-
rison with the. ordered condition and its generaﬁzations, this condition ieads to
a very complicated situation. Therefore, in [ 2], the formulation of an algorithm
for minima! number-grouped partitions was annonnced as an open problem.For
this problem, there have been a variety of approaches by now. For rexample,
Jiyong Liu tried by dynamic programming [5] and Guozhi Xu, Qinghua Chen
and Jiyong Liu considered the approximation of the solutions. The first algorithm
for this problem, using reasonable amount of resourses, was obtained by Kequan
Ding [57 in 1986, which solved the open problem.

Compare the researches in both direction, one can find that Li‘s algorithm
is a basic subroutine for the optimization. It was proved in [ 8] that a genere-
ralization of this algorithm can be used to find minimal conforming partitions
for any labelled finite posets. Keep this in mind, we find that whenever we
use Li's algorithm, as our subroutine, we are dealing with a monotone recons-
truction problem as Li did (relabelling the terms of the sequences at hand if
necessary). Here, a natural question ariSes":what is the nature of the monotone
reconstruction problem? ‘

Fortunataly, for this problem, we have

Theorem | Let A be any given sorting algorithm of (m, n) random permutations.
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There is an algorithm B for the monotone reconstruction problem with at most
O(m) time and O(m) space cost more than that used in 4, and vice versa.

As its important consequence, we have the following theorem due to Zhili
Wang . )

Theorem 2 The time complexity of the monotone reconstruction problem for
n-element random permutations is O(nlogn) .

Here, we are going to prove the theorems in two steps. First of all, in sec-
tion 2, we consider the simplified case of our theorem 1, on S(n,n). Then, in
section 3, we generalize the result in section 2 to the forms mentioned above.

2 A Simplified Case §(p, n)

In this section, we prove a spacial version of Theorem 1, and later, in sec—
tion 3, we shall use this statement to prove our Theorem 1.

‘Theorem 3 Let Abe any given sorting algorithm of (n, n) random pemutations
There is an algorithm B for the monotone reconstruction problem with at most
O(n) time and O(n) space cost more than that used in A, and vice versa.

Proof By the definitioh of monotone reconstruction problem, we know that
whenever we have an algorithm for this problem, we can get a minimal parti-
tion of any given random permutation. If we link the parts of this bartition to-
gether such that the first term of the i-th part is right behind the last term of
the (i-1)-th part; for each i>2, then our permutation is well-sorted. For this
reason, the substantial part of our proof is in the opposit direction,as follows.-*

Let A be any sorting algorithm of (n, n) random ‘permutations. Let 7 be any
(n,n) random permutation. Without running the risk of confusion, we use the
same letter 4 to denote the map induced by A on S(n,n). Define

' ' 0=A(1)=123 wen. :
Suppose j=nli;), 1<j<n, we can characterize the map A by the following .

123 wen
T(n,0)=| . .
' iy Qg jy *e iy

1=2643761, 0=A(1)=1234567,

two-row array

For example,

1234567
T(I,,O)Z[ ],
7143635

Let T(n,0,i) be the i-th row of T(#n,0),i=1,2. We use the_following algb*
" rithm to decomposite T(z,0) .

Algorithm K~

'a) consider T(rx, o,2) as a sequence juxtaposited by some maximal increa- _

sing 'subsequences, i.e.,



T(m, 0;2)= T 0T 0 ees0 Ty,
where each 71, is an increasing subsequence of T(r, 0,2),- 1<i< k such that 71,
7,4 (1) is not increasing, 1<i<k-1. '
b) find the partition {n},.,<, of T(x,o,1) such that
T(7r, o,1)=non,osecny,
and
|n|=|u|, for all i.
In the example above,
T(n,0,2)=7143625,
‘r,:7, 1,=14, 1,=36, 7,=25.
T(m,0,2)=10107307,.
Look at the first row T(7®,0,1) of T(x,0), the partmon {-?:'}131-54 of T(x,0,2)
induces a partition {r],-}1<,.<4 of T(z,0,1)
’ Tty 0,1 =ty onzomon=10230 45067,
such that [7:]= |7l for all.i _
Claim A The partition {7}, ;<, is optimal; further, this is the scheme- mo-
ving-down parition of = accordin'g to 0=123 +n. '
Look at the example above, '
#=2643751, 0=1234567.
Obvmusly, {r7,}1<,<4 is the scheme-moving-down partmon of 7 according to ¢
Now, we prove the claim by induction on n. If n=1, that is trivial. Sup-
pose that is true for n<k. Consider the case of n=k+1. Assume that 7(h) =n.

Then,
1 2 3 een—-1n
T(n,a):[; L : ]
ll 12 13 A ln—l-h
Let
7 =7(1) w(2) eeem(h— 1)7!(h+1)---7r(n)-7!(1)2!(2)"-7r(n 1),
0=123 can—1,
‘Then,

1°2 3 wen-1
.-T(n',q’)Z[_ L .. ]
) ) Iy Iz I3 **c iy
By the induction hypothesis, we know that .

. T(xn',0 2)—1,0120---01“
where each 7, is an mcreasmg subsequence, of T(n’, 0’,2), each 1,01y, (1) is
not 1ncreasmg, and '

T(z', o’ 1) =monys -uo}]s
such that {7} _,  is the scheme- movmg down partition of 7’ according to o’ .
Compare i,., and 4, there are two dlfferent cases.
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Case | i,,<h. Then 7,=10{x(h)} is increasing. Thus, in the scheme-mo-
ving-down partition {7} ., of =’, there is a part, say #, ., with its last term
(n-1), and in =, this #—1 is in front of n. Therefore, in the scheme-moving- "
down partition of 7 according to o, the number n must be at the end of the
same -part as that of the (n—-1). And, tl}e scheme- moyi‘lng,—down partitionof 7#
according to ¢ is _

(M Myyoee Moy Mioo{n} s Migar y ooy}
On the other hand, since i, < h, T(x,0,2) has a partition

T(1,0,2) =1010ee01, 015,

The corresponding partition of T(7,0,1) is the’ same as the scheme-moving—
down partition of 7’ according to o’ except that the part containing (n—1) has
n as the last term. Therefore, the partition obtained by our algorithm is the sa—"
me as the scheme-moving-down partition for n=k+1. Hence, Claim A is true
for all natura] numbers. As the estimation of the time and space complexity is
obvious, the proof of Theorem 3 is completed. '

3 The Proof of Theorem |

In this section; we consider the general case; i.e., the case for m>n.
According to the discussion in section 2, it suffices to show that from any ser-
ting algorithm A, an algorithm B for the monotone reconstruction problem can be
developed with O(m) time and O(m) space cost more than that used in A.

~ 1In this case, in order. to tell the difference among terms of the same va-
lue, we need to introduce the following linear 'order among terms of =z. '

Suppose that n(i) =i;, Vie¢(mJ. Each term in 7 is characterized by an orde-
red pair (z(i),i)=(i;,i). Furthér,\we can identify 7 with the two row array

' ‘ . ) 1(2) e 7lm) k
Q(n)=[ 1 2 s m :l

Define an order émong ordered pairs in the following way,

' (x, y)<Cu,p) iff x<u, or x=u &y<v. (3.1)
" Clearly, for an} reS(m,n), {x(i),i)}, .,y <) is a linearly ordered set.Let 4
be any sorting algorithm, apply 4 on the linearly ordered set. After doing this,
as defined above,, another two row array is obtained in which the first row is
in the natural order of integers with repetitions and the second row is a per-
mutation of (m) without rebpetitions. In particular, if there are several integers in
in the first row which are of the same value, then their corresponding integers
in the second row are in the natural order of integers; i..e.,an increasing order.

For eample, let 7=231233424¢5(9,4).

Tz Q(n)
where



2312334214
Q(7r)=(:
11234567889

Thus,
’ 122233344
A(Q(m) = [
314825679
Now, we need the following algorithm to rearrange the columns in A(Q(m)).
Algorithm J
a) i<1,

b) if i=n, stop. Obtain J(A(Q(7®))). ,

¢) let (i,a)’ be the most right column of the form (i,x)', (i+1, b) the most
left column of the form (i+1, y)', for the given i, in A(Q(m)). If a<b, then
i<—i+1, repeat b);

d) if b<a, find the most left column of the form (i+ 1, ¢)' such that a<c.
If such a ¢ does not exist, i<i+1,g80 to b);

e) if such a c exists, let (i+1,d)" be the most right column of the form
(i+1,x)', move the columns from (i+1,c) to (i+1,d)', to the left of (i+1 b),
and keep their relative positions. unchanged. i<i+1, goto b);

Here, we use an example to show the execution of step e). Suppose our
array is as the following

12223334 4’}

A(-Q(u))=[
3148256739

Since in the second row, 3>1 & 3<4, we need to move the third and the
forth column to the left of the second column and we have
122233344
348125679 ]
Thus, in the second row J,=J,(A(Q(7))) of J(A(Q(=))), we can find set
{'t,}l <i<k Of increasing subsequences of J, shch that '

JCAQ(m)) =

S = Tlorzo--.ofkr
.and 7,07,,(1) is not increasing, for i=1,2,+, k—1. Let {n,},.,., be the corres-
ponding set of snbsequences of the first row J, = J,(A(Q(rr))) of J(A(Q(m)));i.e.,
."hl"l"l', i=1,2, -, k and i '
Jy= Mo, oeeon, .
Recall that the map from J(A(Q(1))) to {m}, <i<i is K. Here, define ®=KoJo
A°Q, where “o” is the composition operation of operators.
Claim B {7}, ,_,., is the scheme-moving-down partition of z.
Proof of (Qaim B We shall prove the claim by induction on (m—-n) and n.
If m-n=0, then for all n, itis the case of Theorem 3. Suppog;e that claim
B is true for m~n<k and n-1. Consider the case of m- n=k+1 and n. Let



U={i|n(i)=n,ie(m)}, h=maxU, [=minU,
and
7' =1(1)w(2) eeet(h=1)T(Ch+1) eeen(m);
i.e., 7’ is obtained from r by deleting the term n(h). There are two possibilities.

Ca|se | U is a singleton. Thus, 7’¢S(m-1,n—1). By the h‘ypothesis of induc-
tion, ‘the set ®¢x’) = {n}} ., of subsequences is a scheme-moving-down par-
tition of 7’. Soppose that =(s) is the last term in the last part n, of ®(n’). If
s<h, then {n}, o, U{non(h)} is the scheme-moving-down partition of z .
If s>h, then {7} o, U{{z(W}} is the scheme- moving-down partition of .
Thus, what we need to show is that

() = {0} e Ul o n(}, if s<h (3.2)
and

‘ o) ={m}, ., Uz}, if s>h.

By the characterization of terms in 7, we know that 7(h) is characterized by
(n, A" which is the last column of Q(x). Under the order defined by (3.1),
(n, k) is the maximal element of ({n(i),i)}1<,.<m, <). Since U is a singleton,
the algorithm J has nothing to do with (nlh)'—(gee the steps ¢ & d)). By the .
induction hypothesis, @(z")={n;},_,_, is the scheme-moving-down partition of
7’. Hence, the structure of algorithm K imples that (3.2) is true.

Case 2 U is not a singleton.

As shown in the argument of case !, (m, k) is the maximal element of
(x(D)yi)}jems <) .Since U is not a singleton, 7(s)=n. Thus, 1<s<h-1.By
the induction hypothesis, ®(7’) ={r7§.‘}1£,.f;k is a. scheme-moving-down partition
of 7’. Thus, Li’s algorithm implies that {n;},.,<,.,U{n,on(h)} is the scheme-
moving'—down partition of 7z if there is no term between 7(s) and #(h) in =
which is of value »,i.e., . .
v=_{ils<ih, iU} =Q.
¥ V+J, then {n} ., ,U{mqon(} U{n) is the scheme- moving-down par-
tition of 7. '

Now, we show that

() ={n} <;cp J{meon()}, if V=0,

(1) = {m}  cich S o)y UL}, if VED .
Since U is not singleton, V=(¢J implies that algorithm J has nothing to do with
all the columns of the form (n,i)’. Hence, all of them except (n, h)' must be
at the end of #, and satisfy i<h. It follows that the execution of algo-
rithm K on J(A(Q(x))) just attach (n, h)' at the end of #,. If V&, the exe-
cution of algorithm J divides all the pairs of the form (n,i)' in A(QA(‘n’)) into «
two groups, say



Gi=(nyiy ), (Ryiy), ooy (nyi)|s<iy<<iy<<oee<li,},
Gzz{(”9jl)9 (bn’jz)y'"’ (n’iv)|j1<j2<'"<jv<3}'
By the structure of algorithm K, we have

, .,.' n—l N vee n
e~ Lo
coe S ll ose lll
n LYY n
02:[ , . ]
11 (XY} lll

O(m) = K(JCAQOM = {n]} | o, U {mea Sa(}ULmi}, if VED.
And, our theorem 1 is proved .

Hence,

Nate that the time comlexity of sorting problem of n-element random per-
mutations is O(nlogn), we know that theorem 2 is a natural consequence of
theorem 1.
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