ON A CLASS OF WEAK BERWALD (α, β)－METRICS

JIANG Jing－nong ${ }^{1}$ ，CHENG Xin－yue ${ }^{2}$
（1．Department of Medical Information Engineering，Zunyi Medical College，Zunyi 563000，China）
（2．School of Math．and Statistics，Chongqing University of Technology，Chongqing 400050，China）

Abstract

We study an important class of weak Berwald (α, β)－metrics in the form $F=$ $\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)(\varepsilon$ is a constant）on a manifold．By using a formula of the S－curvature，we obtain sufficient and necessary conditions for such metrics to be weak Berwald metrics．We also prove that F is a weak Berwald metric with scalar flag curvature if and only if it is a Berwald metric and its flag curvature vanishes．

Keywords：$\quad(\alpha, \beta)$－metric；weak Berwald metric；flag curvature
2010 MR Subject Classification：53B40；53C60
Document code：A Article ID：0255－7797（2014）05－0863－08

1 Introduction

In Finsler geometry，there are several important classes of Finsler metrics．The Berwald metrics were first investigated by L．Berwald．By definition，a Finsler metric F is a Berwald metric if the spray coefficients $G^{i}=G^{i}(x, y)$ are quadratic in $y \in T_{x} M$ at every point x ，i．e．，

$$
G^{i}=\frac{1}{2} \Gamma_{j k}^{i}(x) y^{j} y^{k}
$$

Riemannian metrics are special Berwald metrics．In fact，Berwald metrics are＂almost Riemannian＂in the sense that every Berwald metric is affinely equivalent to a Riemannian metric，i．e．，the geodesics of any Berwald metric are the geodesics of some Riemannian metric．Weak Berwald spaces were first investigated by Bácsó and Yoshikawa in 2002 ［2］． The class of weak Berwald metrics is more generalized than Berwald metrics in［6］．Hence it becomes an important and natural problem to study weak Berwald（ α, β ）－metrics．Cui obtained the necessary and sufficient conditions for two important kinds of (α, β)－metrics in the forms of $F=\alpha+\varepsilon \beta+k \frac{\beta^{2}}{\alpha}$ and $F=\frac{\alpha^{2}}{\alpha-\beta}$ to be weak Berwald metrics in［7］．Xiang and Cheng characterized a special class of weak Berwald (α, β)－metrics in the form of $F=$ $(\alpha+\beta)^{m+1} / \alpha^{m}$ in［10］．Further，Cheng and Lu studied two kinds of weak Berwald metrics of scalar flag curvature in［4］．

[^0]The purpose of this paper is to study a special class of weak Berwald (α, β)-metrics in the form of $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$. We have the following:

Theorem 1.1 Let $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$ be an arctangent Finsler metric on an n-dimensional manifold $M(n \geq 3)$, where ε is a constant. Then the following are equivalent:
(a) F has isotropic S-curvature, i.e., $\mathbf{S}=(n+1) c F$;
(b) F has isotropic mean Berwald curvature, i.e., $\mathbf{E}=\frac{n+1}{2} c F^{-1} h$;
(c) β is a Killing 1 -form of constant length with respect to α, i.e., $r_{00}=s_{0}=0$;
(d) F has vanished S-curvature, i.e., $\mathbf{S}=0$;
(e) F is a weak Berwald metric, i.e., $\mathbf{E}=0$, where $c=c(x)$ is a scalar function on M.

By [2], an arctangent Finsler metric $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$ is of scalar flag curvature with vanishing S-curvature if and only if its flag curvature $\mathbf{K}=0$ and it is a Berwald metric. In this case, F is a locally Minkowski metric. Thus F is a weak Berwald metric with scalar flag curvature, its local structure can be completely determined.

Corollary 1.2 Let $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$ be an arctangent Finsler metric on an n-dimensional manifold $M(n \geq 3)$, where ε is a constant. Then F is a weak Berwald metric with scalar flag curvature $\mathbf{K}=\mathbf{K}(x, y)$ if and only if it is a Berwald metric and $\mathbf{K}=0$. In this case, F must be locally Minkowskian.

2 Preliminaries

In Finsler geometry, (α, β)-metrics form a very important and rich class of Finsler metrics. An (α, β)-metric is expressed as the following form

$$
F=\alpha \phi(s), s=\frac{\beta}{\alpha}
$$

where α is a Riemannian metric and β is a 1 -form. $\phi(s)$ is a positive C^{∞} function on an open interval $\left(-b_{0}, b_{0}\right)$ and satisfying

$$
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0,|s| \leq b<b_{0}
$$

where $b:=\|\beta\|_{\alpha}$. It is known that $F=\alpha \phi(s)$ is a Finsler metric if and only if $\|\beta\|_{\alpha}<b_{0}$ for any $x \in M$ in [6]. In this paper, we consider a special (α, β)-metric in the following form:

$$
\begin{equation*}
F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right) \tag{2.1}
\end{equation*}
$$

where ε is an arbitrary constant. We call this metric an arctangent Finsler metric. Let $b_{0}>0$ be the largest number such that

$$
\begin{equation*}
\frac{1-s^{2}+2 b^{2}}{\left(1+s^{2}\right)^{2}}>0, \quad|s| \leq b<b_{0} \tag{2.2}
\end{equation*}
$$

so that $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$ is a Finsler metric if and only if β satisfies that $\|\beta\|_{\alpha}<b_{0}$ for any $x \in M$. Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ denote covariant derivative of β with respect to α.

Denote

$$
\begin{aligned}
& s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), r_{i j}:=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), s_{l 0}:=s_{l i} y^{i}, s_{0}:=b^{l} s_{l 0} \\
& r_{00}:=r_{i j} y^{i} y^{j}, r_{i}:=r_{i j} b^{j}, r_{0}:=r_{j} y^{j}
\end{aligned}
$$

Let $G^{i}(x, y)$ and $G_{\alpha}^{i}(x, y)$ denote the spray coefficients of F and α, respectively. We have the following formula for the spray coefficients $G^{i}(x, y)$ of F,

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s^{i}{ }_{0}+\Theta\left\{-2 \alpha Q s_{0}+r_{00}\right\} \frac{y^{i}}{\alpha}+\Psi\left\{-2 \alpha Q s_{0}+r_{00}\right\} b^{i} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
Q & =\varepsilon+\varepsilon s^{2}+\arctan (s)+s^{2} \arctan (s)+s \\
\Theta & =\frac{\varepsilon-s-\varepsilon s^{2}-\arctan (s) s^{2}+\arctan (s)}{2\left(1+2 b^{2}-s^{2}\right)(1+\varepsilon s+s \arctan (s))} \\
\Psi & =\frac{1}{1+2 b^{2}-s^{2}} \tag{2.4}
\end{align*}
$$

As is well known, the Berwald tensor of a Finsler metric F with the spray coefficients G^{i} is defined by $\mathbf{B}_{\mathbf{y}}:=B_{j k l}^{i}(x, y) d x^{j} \otimes d x^{k} \otimes d x^{l} \otimes \partial_{i}$, where

$$
\begin{equation*}
B_{j k l}^{i}:=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}} \tag{2.5}
\end{equation*}
$$

Furthermore, the mean Berwald tensor $\mathbf{E}_{\mathbf{y}}:=E_{i j}(x, y) d x^{i} \otimes d x^{j}$ is defined by

$$
\begin{equation*}
E_{i j}:=\frac{1}{2} B_{m i j}^{m}=\frac{1}{2} \frac{\partial^{2}}{\partial y^{i} \partial y^{j}}\left(\frac{\partial G^{m}}{\partial y^{m}}\right) . \tag{2.6}
\end{equation*}
$$

A Finsler metric is called a Berwald metric if the Berwald curvature $\mathbf{B}=0$. A Finsler metric is called a weak Berwald metric if the mean Berwald curvature $\mathbf{E}=0$.

The S-curvature $S=S(x, y)$ is one of the most important non-Riemannian quantities. For a Finsler metric $F=F(x, y)$ on an n-dimensional manifold M, the Busemann-Hausdorff volume form $d V_{F}=\sigma_{F} d x^{1} \wedge \cdots \wedge d x^{n}$ is given by

$$
\sigma_{F}(x):=\frac{\operatorname{Vol}\left(B^{n}(1)\right)}{\operatorname{Vol}\left\{\left(y^{i}\right) \in R^{n} \mid F(x, y)<1\right\}}
$$

Here Vol denotes the Euclidean volume in R^{n}. The well-known S-curvature is given by

$$
S(x, y)=\frac{\partial G^{m}}{\partial y^{m}}-y^{m} \frac{\partial\left(\ln \sigma_{F}\right)}{\partial x^{m}}
$$

Cheng and Shen obtained a formula for the S-curvature of an (α, β)-metric on an n dimensional manifold M as follows

Lemma 2.1 [5] The S-curvature of an (α, β)-metric is given by

$$
\begin{equation*}
\mathbf{S}=\lambda\left(r_{0}+s_{0}\right)+2(\Psi+Q C) s_{0}+2 \Psi r_{0}-\alpha^{-1} C r_{00} \tag{2.7}
\end{equation*}
$$

where $\lambda:=-\frac{f^{\prime}(b)}{b f(b)}$ is a scalar function on M and $C:=-\left(b^{2}-s^{2}\right) \Psi^{\prime}-(n+1) \Theta$.

3 Proof of Theorem 1.1

The proof contains the following steps:
Step $1(\mathrm{a}) \Rightarrow(\mathrm{b})$ In fact, $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious true.
Step $2(\mathrm{~b}) \Rightarrow$ (a) Assume that (b) holds, which is equivalent to

$$
\begin{equation*}
\mathbf{S}=(n+1)\{c F+\eta\} \tag{3.1}
\end{equation*}
$$

where η is a 1 -form on M. So (a) is equivalent to (b) if and only if $\eta=0$. Plugging (2.4) and (2.7) into (3.1), we obtain

$$
\begin{align*}
& \left(J_{6} \alpha^{6}+J_{5} \alpha^{5}+J_{4} \alpha^{4}+J_{3} \alpha^{3}+J_{2} \alpha^{2}+J_{1} \alpha+J_{0}\right) \arctan ^{2}\left(\frac{\beta}{\alpha}\right) \\
& +\left(K_{6} \alpha^{6}+K_{5} \alpha^{5}+K_{4} \alpha^{4}+K_{3} \alpha^{3}+K_{2} \alpha^{2}+K_{1} \alpha+K_{0}\right) \arctan \left(\frac{\beta}{\alpha}\right) \\
& +M_{7} \alpha^{7}+M_{6} \alpha^{6}+M_{5} \alpha^{5}+M_{4} \alpha^{4}+M_{3} \alpha^{3} \\
& +M_{2} \alpha^{2}+M_{1} \alpha+M_{0}=0 \tag{3.2}
\end{align*}
$$

where

$$
\begin{aligned}
J_{6}= & 2 \nu s_{0}\left(1+2 b^{2}\right), J_{5}=2 \nu c \beta^{2}\left(1+2 b^{2}\right)^{2}, \\
J_{4}= & 2 s_{0} \beta^{2}\left(4 b^{2}-\nu\right), J_{3}=-4 \nu c \beta^{4}\left(1+2 b^{2}\right), \\
J_{2}= & -2 s_{0} \beta^{4}\left(-2 b^{2}+5+2 n b^{2}+n\right), J_{1}=2 c \nu \beta^{6}, \\
J_{0}= & 2 s_{0} \beta^{6}(n-3), \\
K_{6}= & 4\left(1+2 b^{2}\right)\left(2 \nu c b^{2} \beta+\nu c \beta+s_{0} \varepsilon+\varepsilon n s_{0}\right), \\
K_{5}= & -8 r_{0} b^{2} \beta+8 \nu \eta b^{2} \beta-\nu r_{00}+8 \lambda r_{0} b^{2} \beta+4 \nu c \varepsilon \beta^{2}+2 \lambda s_{0} \beta \\
& +8 \nu \eta b^{2} \beta+8 \lambda r_{0} b^{4} \beta+8 \lambda s_{0} b^{2} \beta+2 \nu \eta \beta-2 \nu b^{2} r_{00}-4 r_{0} \beta \\
& -4 s_{0} \beta+8 \lambda b^{4} s_{0} \beta+16 \nu c \varepsilon b^{2} \beta^{2}+2 \lambda r_{0} \beta+16 \nu c \varepsilon b^{4} \beta^{2}, \\
K_{4}= & -4 \beta^{2}\left(4 \nu c \beta b^{2}+2 \nu c \beta+\varepsilon \nu s_{0}-4 b^{2} \varepsilon s_{0}\right), \\
K_{3}= & -2 \beta^{2}\left(4 \nu c \varepsilon \beta^{2}+8 \nu c \varepsilon \beta^{2} b^{2}+2 \lambda r_{0} \beta+4 \nu \eta b^{2} \beta+2 \lambda s_{0} \beta-2 r_{0} \beta\right. \\
& +4 s_{0} \beta+2 \beta n s_{0}+4 n \beta b^{2} s_{0}+4 \lambda s_{0} b^{2} \beta+2 \nu \eta \beta-4 \beta b^{2} s_{0}+4 \lambda r_{0} b^{2} \beta \\
& \left.-\nu r_{00}-n b^{2} r_{00}+b^{2} r_{00}\right), \\
K_{2}= & -4 \beta^{4}\left(-\nu c \beta+5 \varepsilon s_{0}+\varepsilon n s_{0}+2 \varepsilon n b^{2} s_{0}-2 b^{2} \varepsilon s_{0}\right), \\
K_{1}= & \beta^{4}\left(4 \nu c \varepsilon \beta^{2}+4 \beta n s_{0}+2 \lambda \beta s_{0}+2 \lambda \beta r_{0}-12 s_{0} \beta+2 \nu \eta \beta\right. \\
& \left.+3 r_{00}-n r_{00}\right), \\
K_{0}= & 4(n-3) \varepsilon \beta^{6} s_{0}, M_{7}=2 \nu c\left(1+2 b^{2}\right)^{2}, \\
M_{6}= & 2\left(1+2 b^{2}\right)\left(2 \nu \eta b^{2}+4 \nu c \varepsilon \beta b^{2}+2 \lambda b^{2} r_{0}+2 \lambda b^{2} s_{0}-2 r_{0}+\lambda r_{0}\right. \\
& \left.+\varepsilon^{2} \nu s_{0}-2 s_{0}+2 \nu c \varepsilon \beta+\nu \eta+\lambda s_{0}\right),
\end{aligned}
$$

$$
\begin{aligned}
M_{5}= & 2 \lambda \varepsilon \beta r_{0}+8 \lambda b^{2} \varepsilon \beta s_{0}+2 \lambda \varepsilon \beta s_{0}-8 \varepsilon \beta b^{2} r_{0}+8 \lambda \varepsilon \beta b^{4} r_{0}+2 \nu c \varepsilon^{2} \beta^{2} \\
& +8 \lambda \varepsilon \beta b^{4} s_{0}+8 \lambda \varepsilon \beta b^{2} r_{0}-\varepsilon \nu r_{00}+8 \nu \eta \varepsilon b^{2} \beta-8 \nu c b^{2} \beta^{2} \\
& +2 \nu \eta \varepsilon \beta-4 \varepsilon \beta r_{0}+8 \nu c \varepsilon^{2} b^{4} \beta^{2}+8 \nu \eta \varepsilon b^{4} \beta-4 \nu c \beta^{2} \\
& +8 \nu c \varepsilon^{2} b^{2} \beta^{2}-2 \varepsilon n b^{2} r_{00}-4 \varepsilon \beta s_{0}-2 b^{2} \varepsilon r_{00}, \\
M_{4}= & -\beta\left(8 \nu \varepsilon c \beta^{2}+16 \nu \varepsilon c b^{2} \beta^{2}+4 n b^{2} \beta s_{0}+4 \lambda \beta r_{0}+2 \beta \varepsilon^{2} s_{0}\right. \\
& -2 \beta s_{0}-4 b^{2} \beta s_{0}+4 \nu \eta \beta-4 r_{0} \beta+8 \nu \eta b^{2} \beta+2 n \varepsilon^{2} \beta s_{0}-8 \varepsilon^{2} b^{2} \beta s_{0} \\
& \left.+2 n \beta s_{0}+8 \lambda b^{2} \beta s_{0}+4 \lambda \beta s_{0}+8 \lambda b^{2} \beta r_{0}+2 b^{2} r_{00}-2 n b^{2} r_{00}-\nu r_{00}\right), \\
M_{3}= & -2 \beta^{2}\left(2 \nu \varepsilon^{2} c \beta^{2}+4 \nu \varepsilon^{2} c b^{2} \beta^{2}-\nu c \beta^{2}+4 \lambda \varepsilon b^{2} \beta s_{0}+4 \varepsilon \beta s_{0}-2 \varepsilon \beta r_{0}\right. \\
& +2 \lambda \varepsilon \beta r_{0}-4 \varepsilon b^{2} \beta s_{0}+4 \nu \eta \varepsilon b^{2} \beta+2 \lambda \varepsilon \beta s_{0}+2 \varepsilon n \beta s_{0}+2 \nu \eta \varepsilon \beta \\
& \left.+4 \varepsilon n b^{2} \beta s_{0}+4 \lambda \varepsilon b^{2} \beta r_{0}-\varepsilon \nu r_{00}-\varepsilon n b^{2} r_{00}+\varepsilon b^{2} r_{00}\right), \\
M_{2}= & -\beta^{3}\left(-4 \nu c \varepsilon \beta^{2}+4 \beta n \varepsilon^{2} b^{2} s_{0}+10 \varepsilon^{2} \beta s_{0}-2 \lambda \beta r_{0}-4 \varepsilon^{2} b^{2} \beta s_{0}\right. \\
& \left.-2 n \beta s_{0}-2 \nu \eta \beta+6 \beta s_{0}-2 \lambda \beta s_{0}+2 n \varepsilon^{2} \beta s_{0}-3 r_{00}+n r_{00}\right), \\
M_{1}= & \varepsilon \beta^{4}\left(2 \nu c \varepsilon \beta^{2}+2 \lambda \beta r_{0}+2 \lambda \beta s_{0}-12 \beta s_{0}+4 n \beta s_{0}+2 \nu \eta \beta\right. \\
& \left.+3 r_{00}-n r_{00}\right), \\
M_{0}= & 2 \varepsilon^{2}(n-3) \beta^{6} s_{0}, \nu=n+1 .
\end{aligned}
$$

Replacing y^{i} in (3.2) by $-y^{i}$, we get the following

$$
\begin{align*}
& \left(-J_{6} \alpha^{6}+J_{5} \alpha^{5}-J_{4} \alpha^{4}+J_{3} \alpha^{3}-J_{2} \alpha^{2}+J_{1} \alpha-J_{0}\right) \arctan ^{2}\left(\frac{\beta}{\alpha}\right) \\
& +\left(K_{6} \alpha^{6}-K_{5} \alpha^{5}+K_{4} \alpha^{4}-K_{3} \alpha^{3}+K_{2} \alpha^{2}-K_{1} \alpha+K_{0}\right) \arctan \left(\frac{\beta}{\alpha}\right) \\
& +M_{7} \alpha^{7}-M_{6} \alpha^{6}+M_{5} \alpha^{5}-M_{4} \alpha^{4}+M_{3} \alpha^{3} \\
& -M_{2} \alpha^{2}+M_{1} \alpha-M_{0}=0 \tag{3.3}
\end{align*}
$$

$(3.2)+(3.3)$ yields

$$
\begin{align*}
& \left(J_{5} \alpha^{5}+J_{3} \alpha^{3}+J_{1} \alpha\right) \arctan ^{2}\left(\frac{\beta}{\alpha}\right)+M_{7} \alpha^{7}+M_{5} \alpha^{5}+M_{3} \alpha^{3}+M_{1} \alpha \\
& +\left(K_{6} \alpha^{6}+K_{4} \alpha^{4}+K_{2} \alpha^{2}+K_{0}\right) \arctan \left(\frac{\beta}{\alpha}\right)=0 \tag{3.4}
\end{align*}
$$

(3.2) - (3.3) yields

$$
\begin{align*}
& \left(J_{6} \alpha^{6}+J_{4} \alpha^{4}+J_{2} \alpha^{2}+J_{0}\right) \arctan ^{2}\left(\frac{\beta}{\alpha}\right)+\left(K_{5} \alpha^{5}+K_{3} \alpha^{3}+K_{1} \alpha\right) \arctan \left(\frac{\beta}{\alpha}\right) \\
& =-M_{6} \alpha^{6}-M_{4} \alpha^{4}-M_{2} \alpha^{2}-M_{0} \tag{3.5}
\end{align*}
$$

Using Taylor expansion of $\arctan \left(\frac{\beta}{\alpha}\right)$, we can find that the right side of (3.5) is an integral expression in y and the left side of (3.5) is a fraction expression in y, so that we get

$$
\begin{align*}
& \left(J_{6} \alpha^{6}+J_{4} \alpha^{4}+J_{2} \alpha^{2}+J_{0}\right) \arctan \left(\frac{\beta}{\alpha}\right)+K_{5} \alpha^{5}+K_{3} \alpha^{3}+K_{1} \alpha=0 \tag{3.6}\\
& M_{6} \alpha^{6}+M_{4} \alpha^{4}+M_{2} \alpha^{2}+M_{0}=0 \tag{3.7}
\end{align*}
$$

Similarly, from (3.6), we get the following

$$
\begin{align*}
& J_{6} \alpha^{6}+J_{4} \alpha^{4}+J_{2} \alpha^{2}+J_{0}=0 \tag{3.8}\\
& K_{5} \alpha^{4}+K_{3} \alpha^{2}+K_{1}=0 \tag{3.9}
\end{align*}
$$

For the same reason, by (3.4), we have

$$
\begin{align*}
& J_{5} \alpha^{4}+J_{3} \alpha^{2}+J_{1}=0 \tag{3.10}\\
& K_{6} \alpha^{6}+K_{4} \alpha^{4}+K_{2} \alpha^{2}+K_{0}=0 \tag{3.11}\\
& M_{7} \alpha^{6}+M_{5} \alpha^{4}+M_{3} \alpha^{2}+M_{1}=0 \tag{3.12}
\end{align*}
$$

(3.10) tells us that $J_{1}=2(n+1) c \beta^{6}$ has the factor α^{2}. Because β^{6} and α^{2} are relatively prime polynomials of $\left(y^{i}\right)$, we immediately obtain $c=0$.

Now we split the proof into four cases:
(i) $\varepsilon \neq 0$ and $n=3$;
(ii) $\varepsilon \neq 0$ and $n>3$;
(iii) $\varepsilon=0$ and $n>3$;
(iv) $\varepsilon=0$ and $n=3$.

Case i $\varepsilon \neq 0$ and $n=3$.
In this case, $K_{0}=4(n-3) \varepsilon \beta^{6} s_{0}=0$. Hence, (3.11) implies that $K_{2}=-16 \varepsilon \beta^{4} s_{0}\left(b^{2}+2\right)$ has the factor α^{2}. This implies $s_{0}=0$. By use of $s_{0}=0$ and $c=0$, we have $M_{7}=M_{0}=0$.

By (3.7), we obtain the following

$$
\begin{align*}
& 2\left(1+2 b^{2}\right)\left(8 \eta b^{2}+2 \lambda b^{2} r_{0}+\lambda r_{0}+4 \eta-2 r_{0}\right) \alpha^{4}-\beta\left(16 \eta \beta+32 \eta b^{2} \beta+8 \lambda r_{0} b^{2} \beta+4 \lambda r_{0} \beta\right. \\
& \left.-4 r_{0} \beta-4 b^{2} r_{00}-4 r_{00}\right) \alpha^{2}+\beta^{3}\left(8 \eta \beta+2 \lambda r_{0} \beta\right)=0 \tag{3.13}
\end{align*}
$$

By (3.12), we obtain the following

$$
\begin{align*}
& 2 \varepsilon\left(1+2 b^{2}\right)\left(2 \lambda r_{0} b^{2} \beta+8 \eta b^{2} \beta+\lambda r_{0} \beta+4 \eta \beta-2 r_{0} \beta-2 r_{00}\right) \alpha^{4}-4 \varepsilon \beta^{2}\left(2 \lambda r_{0} b^{2} \beta\right. \\
& \left.-r_{0} \beta+\lambda r_{0} \beta+8 \eta b^{2} \beta+4 \eta \beta-b^{2} r_{00}-2 r_{00}\right) \alpha^{2}+\varepsilon \beta^{4}\left(2 \lambda r_{0} \beta+8 \eta \beta\right)=0 . \tag{3.14}
\end{align*}
$$

$(3.14)-(3.13) \times \varepsilon \beta$ gives

$$
\begin{equation*}
4 \varepsilon\left[\left(1+2 b^{2}\right) \alpha^{2}-\beta^{2}\right] r_{00}=0 \tag{3.15}
\end{equation*}
$$

Because F is non-Riemannian, $\left(1+2 b^{2}\right) \alpha^{2}-\beta^{2} \neq 0$, thus we get

$$
\begin{equation*}
r_{00}=0, \quad r_{0}=0 \tag{3.16}
\end{equation*}
$$

Plugging (3.16) into (2.7) yields $\mathbf{S}=0$. In this case $\eta=0$.
Case ii $\varepsilon \neq 0$ and $n>3$.
From (3.7), we can see that $M_{0}=2 \varepsilon^{2}(n-3) \beta^{6} s_{0}$ has the factor α^{2}. Since $\varepsilon \neq 0$ and $n>3$, we have $s_{0}=0$. By use of (3.7) and (3.12) and using the same skills in case (i), we obtain

$$
\begin{equation*}
r_{00}=0, \quad r_{0}=0, \quad \eta=0, \quad \mathbf{S}=0 \tag{3.17}
\end{equation*}
$$

Case iii $\varepsilon=0$ and $n>3$.
By (3.8), we can see that $J_{0}=2 s_{0} \beta^{6}(n-3)$ has the factor α^{2}. Obviously, we can get $s_{0}=0$.

From (3.7), we get the following

$$
\begin{align*}
& 2\left(1+2 b^{2}\right)\left(2(n+1) \eta b^{2}+2 \lambda b^{2} r_{0}+\lambda r_{0}+(n+1) \eta-2 r_{0}\right) \alpha^{4} \tag{3.18}\\
& -\beta\left(4(n+1) \eta \beta+8(n+1) \eta b^{2} \beta+8 \lambda r_{0} b^{2} \beta+4 \lambda r_{0} \beta-4 r_{0} \beta-2 n b^{2} r_{00}\right. \\
& \left.-(n+1) r_{00}+2 b^{2} r_{00}\right) \alpha^{2}+\beta^{3}\left(2(n+1) \eta \beta+2 \lambda r_{0} \beta-n r_{00}+3 r_{00}\right)=0
\end{align*}
$$

From (3.9), we have

$$
\begin{align*}
& \left(1+2 b^{2}\right)\left(4(n+1) \eta b^{2} \beta+4 \lambda r_{0} b^{2} \beta-(n+1) r_{00}-4 r_{0} \beta+2(n+1) \eta \beta+2 \lambda r_{0} \beta\right) \alpha^{4} \\
& -2 \beta^{2}\left(4(n+1) \eta b^{2} \beta+2 \lambda r_{0} \beta+2(n+1) \eta \beta+4 \lambda r_{0} b^{2} \beta-2 r_{0} \beta-(n+1) r_{00}\right. \\
& \left.-n b^{2} r_{00}+b^{2} r_{00}\right) \alpha^{2}+\beta^{4}\left(2 \lambda r_{0} \beta+2(n+1) \eta \beta-n r_{00}+3 r_{00}\right)=0 \tag{3.19}
\end{align*}
$$

$(3.19)-(3.18) \times \beta$ yields

$$
\begin{equation*}
(n+1)\left[\left(1+2 b^{2}\right) \alpha^{2}-\beta^{2}\right] r_{00}=0 \tag{3.20}
\end{equation*}
$$

This implies $r_{00}=0$. For the same reason, we have

$$
\begin{equation*}
r_{0}=0, \quad \eta=0, \quad \mathbf{S}=0 \tag{3.21}
\end{equation*}
$$

Case iv $\varepsilon=0$ and $n=3$.
In this case, $J_{0}=2 s_{0} \beta^{6}(n-3)=0$. (3.8) becomes

$$
\begin{equation*}
\left[\left(1+2 b^{2}\right) \alpha^{4}+\left(b^{2}-1\right) \beta^{2} \alpha^{2}-\left(b^{2}+2\right) \beta^{4}\right] s_{0}=0 \tag{3.22}
\end{equation*}
$$

We assert that $s_{0}=0$. Or else, (3.22) tells us that $\beta^{4}\left(b^{2}+2\right)$ has the factor α^{2}. This implies $\beta=0$, but it is impossible by the assumptions. By using the same methods as case iii, we get that (3.21) holds.

Anyway, we obtain $r_{00}=0, s_{0}=0, \eta=0, \mathbf{S}=0$. Which implies that F is of isotropic S-curvature with $c=0$.

Step $3(b) \Rightarrow(c)$ The proof has been contained in Step 2.
Step $4(\mathrm{c}) \Rightarrow(\mathrm{d})$ When $r_{00}=0$ and $s_{0}=0$, by (2.7), we have $\mathbf{S}=0$.
Step $5(\mathrm{~d}) \Rightarrow(\mathrm{e}) \mathbf{S}=0$ implies that F is of isotropic S-curvature with $c=0$. Thus, we obtain $\mathbf{E}=0$ by the equivalence of (a) and (b).

Step $6(\mathrm{e}) \Rightarrow$ (a) $\mathbf{E}=0$ is equivalent to that F is of isotropic mean Berwald curvature with $c=0$, that is, (b) holds with $c=0$. By the equivalence of (a) and (b), we know that F has isotropic S-curvature with $c=0$. This completes the proof. Theorem 1.1 is proved completely.

References

［1］Bácsó S，Cheng X Y，Shen Z M．Curvature properties of (α, β)－metrics［J］．Advanced Studies in Pure Mathematics，Math．Soc．Japan，2007，48：73－110．
［2］Bácsó S，Yoshikawa R．Weak Berwald spaces［J］．Publ．Math．Debrecen，2002，61：219－231．
［3］Cheng Xinyue．On (α, β)－metrics of scalar flag curvature with constant S－curvature［J］．Acta Math－ ematica Sinica，English Series，2010，26（9）：1701－1708．
［4］Cheng Xinyue，Lu Congyin．Two kinds of weak Berwald metrics of scalar flag curvature［J］．Journal of Mathematical Research Exposition，2009，29（4）：607－614．
［5］Cheng X Y，Shen Z M．A class of Finsler metrics with isotropic S－curvature［J］．Israel．J．math， 2009，169：317－340．
［6］Chern S S，Shen Z M．Riemann－Finsler geometry［M］．Beijing：World Scientific Publishers， 2005.
［7］Cui Ningwei．On the S－curvature of some（ α, β ）－metrics［J］．Acta．Math．Sci．，2006，26A（7）：1047－ 1056.
［8］Li B L，Shen Y B，Shen Z M．On a class of Douglas metrics［J］．Studia Scientiarum Mathematicarum Hungarica，2009，46（3）：355－365．
［9］Shen Yibing，Yu Yaoyong．On projectively related Randers metrics［J］．Int．J．Math．，2008，19（5）： 503－520．
［10］Xiang Chunhuan，Cheng Xinyue．On a class of weak Berwald（ α, β ）－metrics［J］．Journal of Mathe－ matical Research Exposition，2009，29（2）：227－236．

关于一类弱Berwald 的 (α, β)－度量

> 蒋经农 1, 程新跃 ${ }^{2}$
> (1. 遵义医学院医学信息工程系, 贵州遵义 563000)
> (2. 重庆理工大学数学与统计学院, 重庆 400050)

摘要：本文研究了一类重要的形如 $F=\alpha+\varepsilon \beta+\beta \arctan \left(\frac{\beta}{\alpha}\right)$（ ε 为常数）的弱Berwald (α, β)－度量．利用 S－曲率公式，获得了这类度量为弱Berwald度量的充要条件．并且还证明了 F 为具有标量旗曲率的弱Berwald度量当且仅当它们为Berwald 度量且旗曲率消失．

关键词：(α, β)－度量；弱Berwald度量；旗曲率
MR（2010）主题分类号：53B40；53C60 中图分类号：O186．14

[^0]: ＊Received date：2012－05－03 Accepted date：2013－01－04
 Foundation item：Supported by National Natural Science Foundation of China（10971239）；Nat－ ural Science Foundation of Guizhou Province（JLKZ201201）．

 Biography：Jiang Jingnong（1982－），male，born at Zhongxian，Chongqing，associate professor， major in differential geometry．

