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1 Introduction

Let Rn be the n-dimensional Euclidean space. A convex body K ⊆ Rn is a compact
convex subset with non-empty interior. Associated with a compact convex set K is its
support function hK defined on Rn by hK(x) = max{〈x, y〉 : y ∈ K}, where 〈x, y〉 is the
usual inner product of x and y in Rn. The support function hK is positively homogeneous
of degree 1. We shall usually be concerned with the restriction of the support function to
the unit sphere Sn−1 in Rn.

For a compact set L in Rn which is star shaped with respect to the origin o, define
the radial function ρL of L by ρL(x) = max{λ ≥ 0 : λx ∈ L}, x ∈ Rn − {o}. The radial
function is positively homogeneous of degree −1. One can identify the radial function with
its restriction to the unit sphere Sn−1 in Rn.

If ρL is continuous, we shall call L a star body. A star body which is centrally symmetric
with respect to the origin will be called a centered body. We shall use S and Se to denote
the set of star bodies and the set of centered bodies, respectively.

For a convex body K containing the origin in its interior, the polar body K∗ of K is
defined by

K∗ = {x ∈ Rn : 〈x, y〉 ≤ 1, y ∈ K}.
It is easy to verify that K∗∗ = K, and that hK∗ = ρ−1

K , ρK∗ = h−1
K .
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If K is a centered convex body, then the reciprocal of its radial function induces a norm
on Rn, denoted by ‖ ¦ ‖K , whose unit ball is K. That is,

‖x‖K = ρK(x)−1, x ∈ Rn.

Conversely, if (Rn, ‖ ¦ ‖) is a normed space with unit ball K (i.e., K = {x ∈ Rn : ‖x‖ ≤ 1}),
it is easily seen that ‖ ¦ ‖ = ‖ ¦ ‖K .

A centered convex body K in Rn is called an Lp-ball, if it is the unit ball of an n-
dimensional subspace of some Lp-space. Denote by Lp the class of Lp-balls. It is noted that
the class Lp is well known and is important in the local theory of Banach spaces. See, for
example, [11, 12].

Note that L2 is the class of centered ellipsoids. The most important example of an
Lp-ball is the unit ball of space lnp given by

{x = (x1, · · · , xn) ∈ Rn :| x1 |p + · · ·+ | xn |p≤ 1}.

Recall that the Lp-centroid body ΓpL of a star body L is defined by

hΓpL(u)p =
1

V (L)

∫

L

| 〈u, x〉 |p dx, u ∈ Sn−1, p ≥ 1.

Therefore the polar body Γ∗pL of ΓpL belongs to Lp. The first-order centroid body Γ1L is
usually called the centroid body of L [23] and is denoted by ΓL. For p = 2, they are the
Legendre ellipsoids which appears in classical mechanics. In the important paper [16], the
Lp analogs of two famous affine isoperimetric inequalities in convex geometry, which are the
Busemann-Petty centroid inequality and Petty projection inequality, are established.

Using polar coordinates, one can write the last integral as an integral over Sn−1,

hΓpL(u)p =
1

(n + p)V (L)

∫

Sn−1

| 〈u, v〉 |p ρL(v)n+pdv.

In this paper, we establish several new characterizations and inequalities for Lp-balls
by using dual mixed volumes, spherical Radon transform and Fourier transform. One of the
inequalities is related to the famous maximal slice conjecture.

To make the paper self-contained, we will recall some basic facts on dual mixed volume
and Radon transform. For more details, one can refer [2, 4, 9, 13–16, 25, 26], etc.

2 Dual Mixed Volume and Radon Transform

As usual, Sn−1 denotes the unit sphere, Bn the unit ball and o the origin in the n-
dimensional Euclidean space Rn. The surface area of the unit sphere Sn−1 and the volume
of the unit ball Bn in Rn are denoted by αn−1 and ωn, respectively. Note that αn−1 = nωn,
and ωn = 2π

n
2

nΓ( n
2 )

. For real p ≥ 1, define cn,p by cn,p = ωn+p

ω2ωnωp−1
.

For K1, · · · ,Kr ∈ S , λ1, · · · , λr ≥ 0, the radial linear combination λ1K1+̃ · · · +̃λrKr ∈
S , is defined by

ρλ1K1+̃···+̃λrKr
= λ1ρK1 + · · ·+ λrρKr

.
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The volume of the radial linear combination λ1K1+̃ · · · +̃λrKr is a homogeneous nth-
degree polynomial in the λi,

V (λ1K1+̃ · · · +̃λrKr) =
∑

Ṽ (Ki1 , · · · ,Kin
)λi1 · · ·λin

,

where the sum is taken over all n-tuples (i1, · · · , in) whose entries are positive integers not
exceeding r. The coefficient Ṽ (Ki1 , · · · ,Kin

) is non-negative and depends only on the bodies
Ki1 , · · · ,Kin

. It is called the dual mixed volume of Ki1 , · · · ,Kin
. One has the following

integral representation of dual mixed volumes:

Ṽ (K1, · · · ,Kn) =
1
n

∫

Sn−1

ρK1(u) · · · ρKn
(u)du,

where du is the volume element of Sn−1.
Dual mixed volumes are the counterparts of mixed volumes. While the mixed volumes

date back to Minkowski in the last century, the dual mixed volumes were only recently
discovered. They play the roles in the study of cross-sections of convex bodies as the mixed
volumes do for the study of projections of convex bodies. However, this duality is not at all
trivial. One should read the book [2] for an excellent illustration. Dual mixed volumes are
far from well understood. Their applications to the characterizations of intersection bodies
and the solutions of the Busemann-Petty problem are very recent developments. See [7, 20,
21, 27].

Denote Ṽ (K, · · · ,K, L, · · · , L) by Ṽi(K, L), where K appears n− i times and L appears
i times. The dual quermassintegral W̃n−i(K) is given by Ṽi(K,Bn). The importance of the
dual quermassintegrals lies in the fact that the (n − i)th dual quermassintegral of a star
body K is proportional to the mean of the i-dimensional volumes of the slices of K by the
i-dimensional subspaces of Rn, that is

W̃n−i(K) =
wn

wi

∫

G(n, i)

voli(K ∩ ξ)dµi(ξ),

where G(n, i) is the Grassmann manifold of i-dimensional subspaces of Rn, and µi the Haar
measure on G(n, i), normalized by µi(G(n, i)) = 1. For K ∈ S , the intersection K ∩ u⊥ is
a star body in (n − 1)-dimensional space. Let W̃n−1−i(K ∩ u⊥) be the (n − 1 − i) th dual
quermassintegral of K ∩ u⊥ in Rn−1, which is called the dual (n − 1 − i)-girth of K in the
direction u.

A slight extension of the notation Ṽi(K, L) is

Ṽr(K, L) =
1
n

∫

Sn−1

ρK(u)n−rρL(u)rdu, r ∈ R.

The dual Minkowski inequalities state that

Ṽr(K, L)n ≤ V (K)n−rV (L)r, if r > 0,

Ṽr(K, L)n ≥ V (K)n−rV (L)r, if r < 0,
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with equalities if and only if K and L are dilations of each other.
The intersection body IK of a star body K ∈ S is defined as the centered body whose

radial function is given by

ρIK(u) = voln−1(K ∩ u⊥), u ∈ Sn−1,

where u⊥ is the (n− 1)-dimensional subspace of Rn orthogonal to u. We will follow Zhang
[25] to consider some generalizations of this definition.

The intersection body of order i of a star body K, IiK, is defined by

ρIiK(u) = W̃n−1−i(K ∩ u⊥), u ∈ Sn−1.

Hence, IK = In−1K.

The intersection body of order i is closely related to the spherical Radon transform. For
f ∈ C(Sn−1), the spherical Radon transform of f , Rf , is defined by

(Rf)(u) =
1

n− 1

∫

Sn−1∩u⊥
f(ν)ds(ν),

where ds is the volume element of Sn−1 ∩u⊥. By applying the spherical Radon transform to
the ith power of the radial function of a star body, we have

(Rρi
K)(u) =

1
n− 1

∫

Sn−1∩u⊥
ρi

K(ν)ds(ν)

=
wn−1

iwi

∫

G(n−1, i)

∫

Sn−2∩ξ

ρi
K(ν)dSi−1(B; ν)dµi(ξ)

=
wn−1

wi

∫

G(n−1, i)

voli(K ∩ u⊥)dµi(ξ).

Hence, we have
ρIiK(u) = (Rρi

K)(u) = W̃n−1−i(K ∩ u⊥).

When restricted to C∞
e (Sn−1), the spherical Radon transform R : C∞

e (Sn−1) → C∞
e (Sn−1)

is a continuous bijection (see Helgason [6, p.161]). It is also selfadjoint, i.e., for f, g ∈
C(Sn−1), (f,Rg) = (Rf, g).

For K ∈ Se, we call the distribution R−1ρK the dual generating distribution of K,
denoted by µ̃K .

Let φ be a function from the Schwartz space S of rapidly decreasing infinitely differen-
tiable functions on Rn. We define the Fourier transform of φ by

φ̂(ξ) =
∫

Rn

φ(x)e−i(x, ξ)dx, ξ ∈ Rn.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function
φ ∈ S. We say that a distribution is positively definite if its Fourier transform is a positive
distribution, in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test function φ.
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For the applications of Fourier transform to convex geometry, one can refer the papers,
for example, [4, 5, 7, 8, 10, 25] and the book [9].

3 Main Results

A well-known theorem of Lewis [11] will be used in the proof of Theorem 1. We presented
it here in the following form proved in [17] (see Theorem 8.2) by Lutwak, Yang and Zhang.

Lemma 1 If ` is an n-dimensional subspace of Lp, then ` is isometric to the Banach
space (Rn, ‖ ¦ ‖) where the norm ‖ ¦ ‖ can be represented by a finite Borel measure, µ, such
that for all x ∈ Rn,

‖x‖ = (
∫

Sn−1

| x ¦ v |p dµ(v))
1
p ,

and

| x |= (
∫

Sn−1

| x ¦ v |2 dµ(v))
1
2 .

Theorem 1 Let K ∈ Lp, 1 ≤ p < ∞, and L be a star body. Then

Ṽ−p(L, K) =
(n + p)V (L)

n

∫

Sn−1

hp
ΓpL(v)dµK(v),

where µK is a finite Borel measure on Sn−1. Specially, if L is the unit ball Bn, then

Ṽ−p(Bn, K) = nωncn−2, p.

Proof According to Lemma 1, we know that if (Rn, ‖ ¦ ‖K) is a subspace of Lp, p ≥ 1,

then there exists a position of the body K and a finite Borel measure µK on Sn−1 such that
for all x ∈ Rn,

‖x‖p
K =

∫

Sn−1

| x ¦ v |p dµK(v),

and

| x |2=
∫

Sn−1

| x ¦ v |2 dµK(v). (∗)

From the definition of dual mixed volume and Fubini’s theorem, we have

Ṽ−p(L, K) =
1
n

∫

Sn−1

ρn+p
L (u)ρ−p

K (u)du

=
1
n

∫

Sn−1

ρn+p
L (u)(

∫

Sn−1

| u ¦ v |p dµK(v))du

=
1
n

∫

Sn−1

(
∫

Sn−1

ρn+p
L (u) | u ¦ v |p du)dµK(v)

=
(n + p)V (L)

n

∫

Sn−1

(
1

(n + p)V (L)

∫

Sn−1

ρn+p
L (u) | u ¦ v |p du)dµK(v)

=
(n + p)V (L)

n

∫

Sn−1

hp
ΓpL(v)dµK(v).
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When L is the unit ball Bn,

hp
ΓpBn

(v) =
1

(n + p)ωn

∫

Sn−1

ρn+p
Bn

(u) | u ¦v |p du =
1

(n + p)ωn

∫

Sn−1

| u ¦v |p du =
nω

n
c

n−2,p

(n + p)ωn

.

Finally, we only need to compute the measure of Sn−1 with respect to µK . Let σ be the
normalized Haar measure on the sphere. Integrating equation (*) with respect to σ we get

1 =
∫

Sn−1

| x |2 dσ(x) =
∫

Sn−1

∫

Sn−1

| x ¦ v |2 dµK(v)dσ(x)

=
∫

Sn−1

| x1 |2 dσ(x) ·
∫

Sn−1

dµK(v) =
1
n

∫

Sn−1

dµK(v).

Hence, when L = Bn, we have Ṽ−p(Bn, K) = nωncn−2, p.

This completes the proof.
From Theorem 1, we can get the following property immediately.
Corollary 1 Let K ∈ Lp, 1 ≤ p < ∞. Then

∫

Sn−1

hp
ΓpK(v)dµK(v) =

n

n + p
,

where µK is a finite Borel measure on Sn−1.

Theorem 2 Let K ∈ Lp, 1 ≤ p < ∞. Then for any star bodies L and M, we have

ΓpL ⊆ ΓpM =⇒ Ṽ−p(L, K)
V (L)

≤ Ṽ−p(M, K)
V (M)

.

Proof From the proof of Theorem 1, we have

Ṽ−p(L, K)
V (L)

=
n + p

n

∫

Sn−1

hp
ΓpL(v)dµK(v),

Ṽ−p(M, K)
V (M)

=
n + p

n

∫

Sn−1

hp
ΓpM (v)dµK(v).

If ΓpL ⊆ ΓpM, then we have hΓpL ≤ hΓpM , Therefore, the following inequality

Ṽ−p(L, K)
V (L)

≤ Ṽ−p(M, K)
V (M)

holds.
This completes the proof.
Corollary 2 Let K ∈ Lp, 1 ≤ p < ∞. Then for any star body L, we have

ΓpL ⊆ ΓpK =⇒ V (L) ≤ V (K).

Proof Let M = K in Theorem 2. Then Ṽ−p(L, K)

V (L)
≤ 1. By the dual Minkowski inequal-

ity, we have
Ṽ−p(L, K)

V (L)
≥ V (L)

n+p
n V (K)

−p
n

V (L)
.
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Therefore, V (L) ≤ V (K).
This completes the proof.
Remark In [5] (see Theorem 4.11 and Corollary 4.13), the authors proved the similar

results as our Theorem 2 and Corollary 2, respectively, when L and M are centered star
bodies.

Theorem 3 Let K ∈ Se. If K is an intersection body, then for all L1, L2, M1,
M2 ∈ Se,

Ṽ (L1+̃L2, i; K, 1; Bn)

Ṽ (M1+̃M2, i; K, 1; Bn)
≤

i∑
k=0

max
u∈Sn−1

Ṽ (L1 ∩ u⊥, k; L2 ∩ u⊥, i− k; Bn, n− i)

Ṽ (L1 ∩ u⊥, k; L2 ∩ u⊥, i− k; Bn, n− i)
.

Proof Suppose K is an intersection body with dual generating measure µ̃k. Then

Ṽ (L1+̃L2, i; K, 1; Bn)

Ṽ (M1+̃M2, i; K, 1; Bn)
=

(ρi
L1+̃L2

, ρk)

(ρi
M1+̃M2

, ρk)
=

((ρL1 + ρL2)i, ρK)
((ρM1 + ρM2)i, ρK)

=
(R(ρL1 + ρL2)i, R−1ρK)
(R(ρM1 + ρM2)i, R−1ρK)

=
(R

∑i

k=0

(
i
k

)
ρk

L1
ρi−k

L2
, R−1ρK)

(R
∑i

k=0

(
i
k

)
ρk

M1
ρi−k

M2
, R−1ρK)

=

∑i

k=0

(
i
k

) ∫
Sn−1 R(ρk

L1
ρi−k

L2
)dũk(u)∑i

k=0

(
i
k

) ∫
Sn−1 R(ρk

M1
ρi−k

M2
)dũk(u)

≤
i∑

k=0

max
u∈Sn−1

R(ρk
L1

ρi−k
L2

)

R(ρk
M1

ρi−k
M2

)

=
i∑

k=0

max
u∈Sn−1

∫
Sn−1∩u⊥ ρk

L1
ρi−k

L2
ds(ν)∫

Sn−1∩u⊥ ρk
M1

ρi−k
M2

ds(ν)

=
i∑

k=0

max
u∈Sn−1

∫
Sn−1 ρk

L1∩u⊥ρi−k
L2∩u⊥ds(ν)∫

Sn−1 ρk
M1∩u⊥ρi−k

M2∩u⊥ds(ν)

=
i∑

k=0

max
u∈Sn−1

Ṽ (L1 ∩ u⊥, k; L2 ∩ u⊥, i− k; Bn, n− i)

Ṽ (M1 ∩ u⊥, k; M2 ∩ u⊥, i− k; Bn, n− i)
.

.

This completes the proof.
Corollary 3 Let K ∈ Se. If K is an intersection body. Then for all L, M ∈ Se,

Ṽ (L, i; K, 1; B)

Ṽ (M, i; K, 1; B)
≤ max

u∈Sn−1

W̃n−1−i(L ∩ u⊥)

W̃n−1−i(M ∩ u⊥)
.

Proof From Theorem 3, we have

Ṽ (L, i; K, 1; B)

Ṽ (M, i; K, 1; B)
=

(ρi
L, ρK)

(ρi
M , ρK)

=
(Rρi

L, R−1ρK)
(Rρi

M , R−1ρK)

=

∫
u∈Sn−1 ρIiL(u)dũk(u)∫
u∈Sn−1 ρIiM (u)dũk(u)

≤ max
u∈Sn−1

ρIiL(u)
ρIiL(u)

= max
u∈Sn−1

W̃n−1−i(L ∩ u⊥)

W̃n−1−i(M ∩ u⊥)
.
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This completes the proof.
To prove the Theorem 4, we will need the following version of Parseval’s formula on the

sphere proved in [7].
Lemma 2 If K and L are origin symmetric infinitely smooth convex bodies in Rn and

0 < p < n, then (‖x‖−p
K )∧ and (‖x‖−n+p

L )∧ are continuous functions on Sn−1 and
∫

Sn−1

(‖x‖−p
K )∧(ξ)(‖x‖−n+p

L )∧(ξ)dξ = (2π)n

∫

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

The concept of embedding of a normed spaces in L−p with 0 < p < n was introduced
in [8] by Koldobsky. It was also proved that, as for positive p, there is a Fourier analytic
characterization for such embeddings, namely a space (Rn, ‖ ¦ ‖) embeds in L−p if and only
if the Fourier transform of ‖ ¦ ‖−p is a positive distribution in Rn. In [10], the unit balls of
such spaces are called L−p-balls or p-intersection bodies.

Theorem 4 Let K and L be origin symmetric infinitely smooth convex bodies in Rn.

If L is a L−p-ball, 0 < p < n, then Ṽp(K, L) ≤ CV (K)
p
n max

ξ∈Sn−1
(‖x‖−n+p

L )∧(ξ), where

C =
Γ(n−p

2
)

2pπ
n
2 n

n−p
n Γ(p

2
)
α

n−p
n

n−1 .

Proof According to the definition of dual mixed volume and Lemma 2, we have

Ṽp(K, L) =
1
n

∫

Sn−1

ρp
K(u)ρn−p

L (u)du

=
1
n

∫

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx

=
1

(2π)nn

∫

Sn−1

(‖x‖−p
K )∧(ξ)(‖x‖−n+p

L )∧(ξ)dξ.

If L is a L−p-ball, then (‖x‖−p
K )∧(ξ) ≥ 0, therefore

Ṽp(K, L) ≤ 1
(2π)nn

∫

Sn−1

(‖x‖−p
K )∧(ξ)dξ · max

ξ∈Sn−1
(‖x‖−n+p

L )∧(ξ)

Using that (see [3], p.192):

(| x |−n+p
2 )∧(ξ) = 2pπ

n
2

Γ(p
2
)

Γ(n−p
2

)
| ξ |−p

2 ,

and applying Parseval’s formula again, then Hölder’s inequality, we have

Ṽp(K, L) ≤ 2−pπ
−n
2

(2π)nn

Γ(n−p
2

)
Γ(p

2
)

∫

Sn−1

(‖x‖−p
K )∧(ξ)(| x |−n+p

2 )∧(ξ)dξ × max
ξ∈Sn−1

(‖x‖−n+p
L )∧(ξ)

=
2−pπ

−n
2

n

Γ(n−p
2

)
Γ(p

2
)

∫

Sn−1

‖x‖−p
K dx · max

ξ∈Sn−1
(‖x‖−n+p

L )∧(ξ)

≤ 2−pπ
−n
2

n

Γ(n−p
2

)
Γ(p

2
)

(
∫

Sn−1

‖x‖−n
K dx)

p
n · (αn−1)

n−p
n · max

ξ∈Sn−1
(‖x‖−n+p

L )∧(ξ)

= CV (K)
p
n · max

ξ∈Sn−1
(‖x‖−n+p

L )∧(ξ),
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where

C =
Γ(n−p

2
)

2pπ
n
2 n

n−p
n Γ(p

2
)
α

n−p
n

n−1 .

This completes the proof.
When K = L, we can get the following result from Theorem 4 immediately.
Corollary 5 Let K be an origin symmetric infinitely smooth convex bodies in Rn. If

K is a L−p-ball, 0 < p < n, then

V (K)
n−p

n ≤ C max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ),

where

C =
Γ(n−p

2
)

2pπ
n
2 n

n−p
n Γ(p

2
)
α

n−p
n

n−1 .

From Theorem 3.8 in [9], we have

(‖x‖−n+1
L )∧(ξ) = π(n− 1)Voln−1(K ∩ ξ⊥).

So according to Corollary 5, when p = 1, we can get
Corollary 6 Let K be an origin symmetric infinitely smooth convex bodies in Rn. If

K is a L−1-ball, then

V (K)
n−1

n ≤ Γ(n−1
2

)

2 1
n π(nΓ(n

2
))

n−1
n

max
ξ∈Sn−1

voln−1(K ∩ ξ⊥).

Corollary 6 is related to the maximal slice conjecture. This conjecture states that for
any origin symmetric convex body there exists an universal constant c > 0 such that

V (K)
n−1

n ≤ c max
ξ∈Sn−1

voln−1(K ∩ ξ⊥).

For related problems, see [1, 22].
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关于 Lp 球的几个新不等式和性质

郑绿洲1,魏正理2

(1. 湖北师范学院数学与统计学院, 湖北黄石 435002)
(2. 上海大学理学院数学系,上海 200444)

摘要: 本文研究了 Lp 球的相关问题. 利用对偶混合体积、球面 Radon变换和 Fourier变换的方法,

获得了关于 Lp 球的几个新不等式和性质, 其中一个不等式与著名的最大切片猜想有关.
关键词: 凸体; 对偶混合体积; Lp 质心体; Lp 球
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