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Abstract: In this paper, we research some related problems of L,-ball and obtain several
new characterizations and inequalities for L,-balls by using dual mixed volumes, spherical Radon
transform and Fourier transform. One of the inequalities is related to the famous maximal slice
conjecture.
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1 Introduction

Let R™ be the n-dimensional Euclidean space. A convex body K C R”™ is a compact
convex subset with non-empty interior. Associated with a compact convex set K is its
support function hg defined on R™ by hg(z) = max{(x, y) : y € K}, where (z, y) is the
usual inner product of z and y in R™. The support function hy is positively homogeneous
of degree 1. We shall usually be concerned with the restriction of the support function to
the unit sphere S”~! in R"™.

For a compact set L in R™ which is star shaped with respect to the origin o, define
the radial function py, of L by pr(z) = max{\ > 0: Az € L}, x € R" — {o}. The radial
function is positively homogeneous of degree —1. One can identify the radial function with
its restriction to the unit sphere S"~! in R™.

If pr is continuous, we shall call L a star body. A star body which is centrally symmetric
with respect to the origin will be called a centered body. We shall use . and ., to denote
the set of star bodies and the set of centered bodies, respectively.

For a convex body K containing the origin in its interior, the polar body K* of K is
defined by

K'={zeR":(z,y) <l,ye K}.

It is easy to verify that K** = K, and that hg- = pi', px- = hj'.
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If K is a centered convex body, then the reciprocal of its radial function induces a norm
on R™, denoted by Kk, whose unit ball is K. That is,

|zl = prc(2)”", @ € R™.

Conversely, if (R™, ||.]|) is a normed space with unit ball K (i.e., K = {z € R" : ||z| < 1}),
it is easily seen that || .|| =« ||x-

A centered convex body K in R™ is called an L,-ball, if it is the unit ball of an n-
dimensional subspace of some L,-space. Denote by £, the class of L,-balls. It is noted that
the class £, is well known and is important in the local theory of Banach spaces. See, for
example, [11, 12].

Note that L, is the class of centered ellipsoids. The most important example of an

L,-ball is the unit ball of space [ given by
{z=(x1, ) ER |21 P+ 4+ |z, |P< 1}

Recall that the L,-centroid body I',L of a star body L is defined by

1
h b= _—— Pod St p > 1.
FpL(u) V(L) /L | <u,x> | T,u < P =

Therefore the polar body I'; L of I',L belongs to £,. The first-order centroid body I'1 L is
usually called the centroid body of L [23] and is denoted by I'L. For p = 2, they are the
Legendre ellipsoids which appears in classical mechanics. In the important paper [16], the
L, analogs of two famous affine isoperimetric inequalities in convex geometry, which are the
Busemann-Petty centroid inequality and Petty projection inequality, are established.

Using polar coordinates, one can write the last integral as an integral over S™~!,
1
(n+p)V(L)

In this paper, we establish several new characterizations and inequalities for L,-balls

B, 1 (w)? = / o) 7 pr ()" do.
Sn—l

by using dual mixed volumes, spherical Radon transform and Fourier transform. One of the
inequalities is related to the famous maximal slice conjecture.
To make the paper self-contained, we will recall some basic facts on dual mixed volume

and Radon transform. For more details, one can refer [2, 4, 9, 13-16, 25, 26], etc.

2 Dual Mixed Volume and Radon Transform

As usual, S”! denotes the unit sphere, B, the unit ball and o the origin in the n-
dimensional Euclidean space R™. The surface area of the unit sphere S"~! and the volume
of the unit ball B,, in R™ are denoted by «,_; and w,, respectively. Note that a,,_1 = nw,,

n
27 2 Wn+4p

Ty - _—
nl'(%) WaWnWp—1

For Ky, ,K, €., A, , A\ > 0, the radial linear combination \; K1+ - - - +\, K, €
&, is defined by

and w,, =

For real p > 1, define ¢, ;, by ¢, , =

Pas K T I, = MPE, o ApK, -
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The volume of the radial linear combination \; K1+ - - - +\. K, is a homogeneous nth-

degree polynomial in the A;,
VLK T INE) =Y V(K K)o A

where the sum is taken over all n-tuples (i1, --- ,i,) whose entries are positive integers not
exceeding r. The coefficient V (K, ,- -+ , K;, ) is non-negative and depends only on the bodies
K ,---,K; . It is called the dual mixed volume of K ,---,K; . One has the following

integral representation of dual mixed volumes:

~ 1
V(Kla"' 7Kn) = - pKl(u)pKn(u)du7
n Jgn-1

where du is the volume element of S"~1.

Dual mixed volumes are the counterparts of mixed volumes. While the mixed volumes
date back to Minkowski in the last century, the dual mixed volumes were only recently
discovered. They play the roles in the study of cross-sections of convex bodies as the mixed
volumes do for the study of projections of convex bodies. However, this duality is not at all
trivial. One should read the book [2] for an excellent illustration. Dual mixed volumes are
far from well understood. Their applications to the characterizations of intersection bodies
and the solutions of the Busemann-Petty problem are very recent developments. See [7, 20,
21, 27].

Denote 17([(, oo K L.+ L) by ‘Z(K, L), where K appears n —1 times and L appears
i times. The dual quermassintegral WH,Z(K ) is given by ‘N/Z(K , By,). The importance of the
dual quermassintegrals lies in the fact that the (n — ¢)th dual quermassintegral of a star
body K is proportional to the mean of the i-dimensional volumes of the slices of K by the

i-dimensional subspaces of R™, that is

W, y(K) =2

w;

/ vol, (K 1 €)dpu(©),
G(n, 1)

where G(n, i) is the Grassmann manifold of i-dimensional subspaces of R, and p; the Haar
measure on G(n,i), normalized by p;(G(n,i)) = 1. For K € ., the intersection K Nu' is
a star body in (n — 1)-dimensional space. Let W,_1_;(K Nut) be the (n — 1 — i) th dual
quermassintegral of K Nu* in R"~!, which is called the dual (n — 1 — i)-girth of K in the
direction w.

A slight extension of the notation V;(K, L) is

~ 1

Vi.(K,L) = n/ pr(w)""pr(u)"du, rER.
S‘n.fl

The dual Minkowski inequalities state that

V.(K,L)" < V(K)""V(L)", if r>0,

V.(K,L)" > V(K)""V(L)", if r<0,
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with equalities if and only if K and L are dilations of each other.
The intersection body I K of a star body K € .¥ is defined as the centered body whose
radial function is given by

pr(u) =vol,_1 (K Nut), uwes" 1,

where u* is the (n — 1)-dimensional subspace of R™ orthogonal to u. We will follow Zhang
[25] to consider some generalizations of this definition.
The intersection body of order ¢ of a star body K, I; K, is defined by

pLK(’U/) = /—W/nflfi(K ﬂul)7 u e Sn—l.

Hence, IK =1, 1 K.
The intersection body of order i is closely related to the spherical Radon transform. For
f € C(S™ 1), the spherical Radon transform of f, Rf , is defined by

) =g [ fwst),

where ds is the volume element of S"~! Nu*. By applying the spherical Radon transform to

the ith power of the radial function of a star body, we have

i) = =5 [ selwstv

n—1
Wp—1

_ ne / / P (V)AS, 1 (B v)dps(€)
Wi JG(n-1, i) Jsn—2n¢

Wp—1

= / voly (K Nub)dpu;(€).
G(n—1, 1)

w;

Hence, we have
prx(u) = (Rpic)(u) = Wiy i (K Nub).
When restricted to C2°(S™~1), the spherical Radon transform R : C2°(S"~1) — C°(S™1)

is a continuous bijection (see Helgason [6, p.161]). It is also selfadjoint, i.e., for f,g €
C(S"), (f, Rg) = (Rf.9).

For K € .,, we call the distribution R~!pg the dual generating distribution of K,
denoted by fig.

Let ¢ be a function from the Schwartz space S of rapidly decreasing infinitely differen-

tiable functions on R™. We define the Fourier transform of ¢ by
o) = / ¢(z)e™" " Vdz, € €R™,
Rn

The Fourier transform of a distribution f is defined by <fA, o) = (f, g/g) for every test function
¢ € S§. We say that a distribution is positively definite if its Fourier transform is a positive

~

distribution, in the sense that (f, ¢) > 0 for every non-negative test function ¢.
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For the applications of Fourier transform to convex geometry, one can refer the papers,
for example, [4, 5, 7, 8, 10, 25] and the book [9].

3 Main Results

A well-known theorem of Lewis [11] will be used in the proof of Theorem 1. We presented
it here in the following form proved in [17] (see Theorem 8.2) by Lutwak, Yang and Zhang.
Lemma 1 If £ is an n-dimensional subspace of L,, then ¢ is isometric to the Banach

can be represented by a finite Borel measure, y, such

space (R™, ) where the norm

that for all x € R,

foll = ([ T duo)?,
Sn—l
and
ol=(] laeo R )t
Sn—l
Theorem 1 Let K € £,,, 1 <p < oo, and L be a star body. Then

> (n+p)V(L)

Pyt 1) = SR [ o)

where px is a finite Borel measure on S™~!. Specially, if L is the unit ball B,,, then
‘N/_p(Bn, K) = nw,cp—2, p.

Proof According to Lemma 1, we know that if (R™, || .|/ k) is a subspace of L,, p > 1,
then there exists a position of the body K and a finite Borel measure px on S™~! such that
for all x € R",

ol = / 2o | dusc(v),
Sn—l

and

o= [ Lo dio) ¥

From the definition of dual mixed volume and Fubini’s theorem, we have

. 1 . B
Vol )= [ o
Snf 1

1 n
— o[ due)de
n Sn—l Snfl

_l n+pu u.vl|? du (v

L[ AT e o)

7M ; P w) | ua P du v
N n Snﬂ((n+p)v(L) /SnlpL (w) | wav [P du)dpg(v)
_ (n+p)V(L) M (0)dic o).

n Snfl
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When L is the unit ball B,

1 1 nw._c
hp V) = —mM n+p m u.v |7 du — / TR du — n - "n—2,p )
by ) = o [ A e du= e [ i pdn = e

Finally, we only need to compute the measure of S"~! with respect to px. Let o be the

normalized Haar measure on the sphere. Integrating equation (*) with respect to o we get

/S |z |* do(z) = /S /S v dux(v)do (o)
/Sn1 | 2y | do(z) - /51 dpg(v) = i/gl djige (v).

Hence, when L = B,,, we have ‘N/_p(Bn, K) = nw,cp—2 p.

1

This completes the proof.
From Theorem 1, we can get the following property immediately.
Corollary 1 Let K € £,, 1 <p < 0o. Then

n
n+p’

/snl hp, i (V)dpx (v) =

where px is a finite Borel measure on S™~!.
Theorem 2 Let K € £,, 1 <p < oo. Then for any star bodies L and M, we have

V(L K) _ V(M. K)

I LCT. .M
e e 70 I 05

Proof From the proof of Theorem 1, we have

‘7—17(-[/7 K) _?’L—|—p » ; .

N V(L)  n /Sn1 ht, L (v)dp (v),

V—P(M7 K)_’I’L—|—p » ; .
V(M) — n /Sn1 hF,,M( YAk (v).

IfIr,L CT,M, then we have hr,, < hr, n, Therefore, the following inequality

V(L K) _ VoM, K)
VD) © V()

holds.
This completes the proof.
Corollary 2 Let K € £,, 1 <p < co. Then for any star body L, we have

I,LCT,K = V(L) <V(K).
Proof Let M = K in Theorem 2. Then Vop(L, K) < 1. By the dual Minkowski inequal-

V(L)
ity, we have

V(L K) | V() V(E)F
v © v
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Therefore, V(L) < V(K).

This completes the proof.

Remark In [5] (see Theorem 4.11 and Corollary 4.13), the authors proved the similar
results as our Theorem 2 and Corollary 2, respectively, when L and M are centered star
bodies.

Theorem 3 Let K € .¥,. If K is an intersection body, then for all Ly, Ly, Mj,
M, € &,

V(L ¥ Lo, i; K, 1; B,) - V(L Nub, k; Lynut, i —k; By, n—1)

max = .
V(M1+M2, i, K, 1; By) wes™ ' V(Ly Nut, k; LoNut, i —k; By, n—1)

k=0

Proof Suppose K is an intersection body with dual generating measure py. Then

V(LiF Ly, i3 K, 15 By) _ (Phgi, ) ((pr +p1a)'s px) _ (Rlpr, +p1.)'s R™'px)

V(M TMs, i; K, 15 B,) (P iar,y o6) (oo, +pM2) o)~ (Rlow + pan)s Bpr)
(R (Dot R pr)

= R (et R

ko () S R(PE, 1" )k (u)

- ero (l) fS"—l R(p’&lpiﬁz’“)d&l(u)

Z PLlpzi_Qk)

uest R(p§r, Pz )

—k
_ max fS” 1nut lepLz dS( )

k=0 uesn—! fSn 1Ayl PM1P§»12kd5( )

f5n 1 leﬂuipL_gﬂuJ-dS(V>
o €5 Jons leﬂu*ngﬁuids(y)
V(Llﬂu ks Lonwut, i —k; By, n—1)

= max = )
wesS™ ' V(M Nut, k; Monut, i —k; By, n—1)

k=0

This completes the proof.
Corollary 3 Let K € ... If K is an intersection body. Then for all L, M € .%,,

V(L, i; K, 1; B) < Wo1_i(L Nut)
max

V(M, i, K, 1; B) ~ wes" W,_,_ (M Nut)

Proof From Theorem 3, we have

V(L,i; K, 1; B) _ (ph, p) _ (Rpl, R pi)

V(M, i; K, 1; B) (P p)  (Rply, R 1px)

L pnn(w)dug(u W 4 €
:quS"* PLL( ) k( ) < max pIq,L(u) — max Wn—l—l(Lmu )

fuesnd prv (w)dug(u) — wes=t prp(u)  uesm ,van,l,i(M N ui).
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This completes the proof.

To prove the Theorem 4, we will need the following version of Parseval’s formula on the
sphere proved in [7].

Lemma 2 If K and L are origin symmetric infinitely smooth convex bodies in R” and

0 < p < n, then (||| )" and (||lz||"*)" are continuous functions on S”~! and

/Sn_l(HIHI}P) ©)(lzl7™) (€)de = (27r)n/ |7 2] 7P da

The concept of embedding of a normed spaces in L_, with 0 < p < n was introduced
n [8] by Koldobsky. It was also proved that, as for positive p, there is a Fourier analytic
characterization for such embeddings, namely a space (R™, || . ||) embeds in L_, if and only
if the Fourier transform of || . ||7? is a positive distribution in R™. In [10], the unit balls of
such spaces are called L_,-balls or p-intersection bodies.

Theorem 4 Let K and L be origin symmetric infinitely smooth convex bodies in R".
If Lis a L_,-ball, 0 < p < n, then V,(K, L) < CV(K)* (Jax, (||| ;") (€), where

r(%=2) n—p

2 .

Proof According to the definition of dual mixed volume and Lemma 2, we have
1 ne
T, 1) = [ ot
Sn—1
1 —ntp
== [l "l " da
S'n,—l

n
1

| ety sl e

If Lis a L_,-ball, then (||z|| )" (&) > 0, therefore

~ 2m)mn
! (=l (€)de - max ([l]| ;") (€)

2m)™n Jgn gesn—1

V,(K, L) <

Using that (see [3], p.192):

I'(5)
I'(%5")
and applying Parseval’s formula again, then Holder’s inequality, we have

2P 3 I‘(M)

(|2 ]"™)" () = 2"n® [€1L"

T, 1) < o S [ a2 @0 177 e e (1770
_27PrE T(%5R) p ntp
SN L el e el e
2 WTH n=r P n—p
S ((2 ) [ el o) (el )

5)
= )5_52%% ([l )™ (),
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where

I‘(H) n—p
Oy
" 2

This completes the proof.

When K = L, we can get the following result from Theorem 4 immediately.

Corollary 5 Let K be an origin symmetric infinitely smooth convex bodies in R™. If
K is a L_,-ball, 0 < p < n, then

V(K)™" < C max (|l]l"7)" ().
gesgn—1

where

r(e=e -
c=——1C2) =
TN = F(g)

From Theorem 3.8 in [9], we have
(l2lZ" )" (€) = m(n — 1)Vol,,_1 (K N ™).

So according to Corollary 5, when p = 1, we can get
Corollary 6 Let K be an origin symmetric infinitely smooth convex bodies in R™. If
K is a L_q-ball, then

=

V(K)5 < re5)

————2——— max_vol,_;(K N&H).
2hm(nl(2)) "5 ceon (ENED)

Corollary 6 is related to the maximal slice conjecture. This conjecture states that for

any origin symmetric convex body there exists an universal constant ¢ > 0 such that

V(K)"El < cféré%)flvoln_l(KﬁfL).

For related problems, see [1, 22].
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