首页 | 官方网站   微博 | 高级检索  
     


Brownian ratchet mechanism of translocation in T7 RNA polymerase facilitated by a post-translocation energy bias arising from the conformational change of the enzyme
Affiliation:Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal Tyr639 from pre- to post-translocation positions. In a series of all-atom molecular dynamics simulations, we show that the movement of Tyr639 is not tightly coupled to the rotation of the O helix, and that the two processes are only weakly dependent on each other. We also show that the internal potential of the enzyme itself generates a small difference in free energy (ΔE) between the post- and pre-translocation positions of Tyr639. The calculated value of ΔE is consistent with that obtained from single-molecule experimental data. These findings lend support to a model in which the translocation takes place via a Brownian ratchet mechanism, with the small free energy bias ΔE arising from the conformational change of the enzyme itself.
Keywords:RNA polymerase  molecular dynamics simulation  molecular motor  Brownian ratchet  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号