首页 | 官方网站   微博 | 高级检索  
     


Damage threshold influenced by polishing imperfection distribution under 355-nm laser irradiation
Affiliation:1. Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China;2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:A systematic interpretation of laser-induced damage in the nanosecond regime is realized with a defect distribution buried inside the redeposited layer arising from a polishing process. Under the 355-nm laser irradiation, the size dependence of the defect embedded in the fused silica can be illustrated through the thermal conduction model. Considering CeO_2 as the major initiator, the size distribution with the power law model is determined from the damage probability statistics. To verify the accuracy of the size distribution, the ion output scaling with depth for the inclusion element is obtained with the secondary ion mass spectrometer. For CeO_2 particulates in size of the depth interval with ion output satisfied in the negative exponential form, the corresponding density is consistent with that of the identical size in the calculated size distribution. This coincidence implies an alternative method for the density analysis of photoactive imperfections within optical components at the semi-quantitative level based on the laser damage tests.
Keywords:laser-induced damage  size distribution  photoactive imperfection  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号