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1, Introduction

The need to ;:onstruct invariant density (ID) on R? ofien arises from in -
variant statistical problem, However thiere has not been a unified explicit for—
mula for all invariant densities on R”, Berger (1980{1)) obtained the explicit
formula for a very special case of ID on R?’based on haar measure theory,
But the case he considered is too restrictive and the treatment he used is
not elementary enough as he had hoped, In general, Zhang Yaoting (1986)
con jectured that there might be a unified treatment for IDs on R? since he
noted that IDs on' R? were treated individually but similarly by doing some
routine computations,

By simply using a well-known elementary change of variables theorem
for multiple integrals, this paper deals wiih ID on R’ by calculus for a quite
general case, The sufficient and necessary condition for a Lebesgue measura-
ble function to be an ID on R’ is characterized through a unified equality.
With this equality we can draw and verify an ID on R’ very easily, Furthe-
rmore, By using this equality this paper obtains the unified explicit formula
for so called strictly invariant density (SID)on R’ under transitive action of
certain group of transformations, then demonstrates the existence znd uniquen-
ess of SID on R’ at this case,

2, Preliminaries

Throughout this paper, We assume _

Assumption 2,1 1) & is a measurable subset of p-dimensional Euclidean
space R? with positive Lebesgue measure and contained in an open subset U
of R7;

2) f(x) is nennegative measurable on & with f (x)<loc a,e.on «;

3) G is a groun of one-to-one transformations on U and for every g €gG,
it holds;i) if x € g, then &(x)€ & and ii) & has continuous first partial deri -
vatives in U, ’
where the concepts of measurable and integration are in the sense of Lebesgue,
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Let J,(x) denote the absolute value of the Jacobian determimant of the
transformation ge¢G and yf(K) = fo(x) dx for measurable subset K of U,

Since g 'e¢G also has first partial derivatives in U, by chain rule of diffe-
rentiation we can easily show that J,(x) does not vanish on U from equality
g0g '=1.Where 1 denotes identity map on U. Hence following change of va-
riable theorem holds immediately, (see ([ 2 ], p.421)

Lemma 2,1 For every ge¢G and measurable sul;set K of %, it holds;
[y f GoOdx = [ S (&), (x)dx . (2.1

In fact, the open subset U in assumption 2,1 can usually be taken as &
or R?, If U= 4, the assumption 2,1 can be sufficiently satisfied by following
simple condition,

Condition 2,1 i) & is an open subset of R? and f (x) as stated in assu-
mption 2,1 2) ;

ii) G is a group of one-to-one transformations on & and any g €G has
continuous first parst partial derivatives in ¢,

3, Invariant density on R’ )

" Definition 3.1 f(x) is said to be an invariant density on %, if u, is an
invariant measure on &, that is, for every g €G and measurable subset K of
*, u(g(K)) =u,

Theorem 3,1 f (x) is an invariant density on & if and only if for every
£€0,
S (C8NI, (x)=f(x) a.e on &, (3.1)
Proof, For every g €G and measurable subset K of &, by lemma
2.1, ‘ '
up (8K =l,  JCodx=] f (8GN, (x)dx.,
By definition 3,1 f(x) is an invariant density on ¢ if and only if for every
g €G and measurable subset K of ¢,
u; (g(K))=u,(K),
equivalently for every g€ G, J FC&8x) Jg(x)dxszf(x)dx for all
measurable subset K of ¢, that is, for every g€G, (3.1) holds. -
Definition 3.2 f(x)is said to be a strictly invariant density, if for every
g €G, it holds,
S8 NI, (x)=S(x) forall xeq, (3.2)
Obviously SID is ID, on the other hand, note the continuity of J,(x) by ass-
sumption 2,1 3)ii) it. follows immediately.
Corollary 3.1 If condition 2,1 holds and f (x) is continuous on ¢ ,then
fix)is an invariant density if and only if f(x) is strictly invariant density,
In fact, SID is the most common ID that appears in statistical references.
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We shall deal with it in later section, Here we give some examples to show
the applications of theorem 3,1, first we state some notations,

M, . (R) denotes the set of all matrice of order n xk with real entries,
"GL(n)={AEM, (R).det (4)x(0} and A>( denotes that A is positive definite
real matrix, : . ,

Example 3.1 If # =GL(n) and g. X——X"! VX € & is the transformation
on &, | denotes identity map on &,

G = {go,1} is the group of'two transformations gy, and 1,

Then we have J,(X) = |det(X)|™*so that (3.1) turns to be f(X ')x
|det (X)[*"= f(X)a.e.on &, thus we may consider f(X) of the form
|det (X) ], substitute it in above formula with simplification, We obtain an
ID f(X)= |det(X)|™ immediately.

Example 3.2 & ={(X,, =, X,): X,€GL(n), X;>0 i=1,2,*p} G={gar
AEGL (n)} where g,-denotes transformation g,z (Xi,+,X,)—>(AX ;A , e,
AX, A" ), ¥ (X, X)) €A,

Then we have J,, ((X;,+,X,)) = |det(4)|7"*! so that (3,1) turns to be

S Xiyoory X)) = [ ((AX Ay o0y AX A )) |det (4" *Pa e, on &,

thus we may consider f((X;,+-, X,)) of the form Il[ ]det (X)) |™, substitute it
1

in "above formula with simplification, We obtain an equivalent formula

|det (4) [P +D+2%a - 1 a3 e on &, Hence [f((Xy,e,X,))=1II7|det (X;)|% is ID
for any fixed array (a;,+-,a,) €R" which satisfies T{a, = — p(n+1)/2.Specially
S((Xy, e, X)) =T11 [det (X;) |""* /2 is one of IDs on .

Example 3.3 & =(T=(1,,, €M, ,, (R): 1:>0,t;;= 0i<j,i,j=1,+,n} 2T",

G ={gs AET"} where g, denotes transformation g,, T—>AT, YT €T",

Then we have J,, (T)=TII{ai=1(4) where A= (au),,ET"* so that (3.1) tur-
ns to be

fAT )Yt (A)=f(T) a,eon T",
Note ¢ (T)T;) =t (Ty)t (T;) holds for any two matrice T,,T,€T*, thus we obtain
an ID f(T) =+ @) =T1{tj' immediately,

Example 3.4 If for every g €G, it holds; J,(x)=1 for all x € 4, Then an
nonnegative measurable function f (x) that can be expressed as a functionof a
maximal invariant is ‘an ID,

Obviously (3,1) turns to be f(&€(x))= f(x) a,e,on & at this case, hence
the desired result follows immediately, ‘

Example 3,5 & =GL (n)

G ={g,: p €GL(n)} where g, denotes transformation g, X—PXP' VXEq,

Then we have J,,(X)=1,by example 3.4,(3,1) turns to be f(PXP')=
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# f(X) a,e on GL(n), hence any nonnegative measurable function that is
invariant under all similar transformations is an ID, Especially let f (X) =
[tr(X)|., fa(X)=|det(X)|", m=1,2,¢, thus f,(X), m=0,1,2,-are IDs and
they are different from each other,

Remarks 3.1 i) It can be seen from the proof of Theorem 3,1 that Theo-
rem 3,1 holds for any case in which change of variable theorem holds. Thus

we need not dwell on stated conditions in Assumptioh 2.1 much since there
are many extended results for change of variables theorem. (See (4], (5),€etc.)

ii) Since GL(n) and T* can be regarded as open subsets of R”? and
R x+/2respectively, Therefore Assumption 2,1 holds for all above examples.

iii) From Example 3.3 and 3.5 we see that SIDs on # under the same G
can be very different from each other,

4 . SID under transitive action of certain group

Throughout this section, we assume further G acts transitively on % . For
any fixed x,€ o and any y€ &, let G,(xo)={g €G:g(x0) =y}

Definition 4,1 For any given x,€ 4, Jacobian is said to be conjugately
identical at xo, if for any g €G,,(xo) it holds. J, (X gzx,=1.

Lemma. 4,1 For any given xo € & then Jacobian is conjugately at xy if and
only if P (p)y Jg(x);‘:xo, g €G,(xo) is a well-defined function for all y€ &,

Theorem 4,1 For any given x,€ &, we have,

i) There exists a nohzero.strictly invariant density on if and only if
'P(y)q is a well-defined measurable function on & and P(y),y<<loo a,e.on &,

ii) Any strictly ipvariant density f(x) on & can be expressed as f(x)=
= [(x0) P(X) x € . Therefore strictly invariant densites on & (under the
same G) are unique up to a multiplicative constant,

By Theorem 4,1 we can determine SIDs on & (under transitive action of
G) through following two steps.

Given xy € &, examine, i) Is Jacobian conjugately identical at x,? ii) Is
P (x),, integrable on &7 If we have positive answers for both i) and ii),then
c p(x)y are all SIDs on & Ctherwise zero fuction is the unique SID on ¢,

We .eft proofs of Theorem 4,1 and Lemma 4.1 to later section, Here we
give some examples to show the applications of Theorem 4.1.

Example 4.1 & =GL(), G={ge AECGL(n)} where g,-denotes transforma-
tion g v X—>AX, VXE &,

Choose Xy=1 (identity matrix), then for any Y € & we have g, (J)=Y] =
Y, that is gy €G,(I), Note J,, (X)x ;= |det (¥)|" thus P(Y),=|det (Y) [ "is a SID
on ¥, -

Example 4.2 4 ={X€GL(n);. X>0}, G= {gA:~AEGL(n)}, where g,.denotes
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transformation g, X—>AXA, VXE &,
Choose X,=I€ ¢, for any Y €&, let Y2 denote the positive definite
-matrix B which satisfies equation B?=Y, It is clear that g1 (I)=Y and
Jey (XD x-r = |det (¥Y)|»+V/2Hence P (¥);=|det(¥Y)|-"+V/2is a SID on g .
Example 4.3 & =T, G={g4: ACT") where g,-denotes transformation g,
T—>TA, VTET",
Choose Ty=1, for any T €T" since gr(I)=T and Jyp(X) ;=172
where T = (1;;),,,, therefore P¢T), =11{r;"'is a SID on &,

S S
Example 4.4 4 =(S=( " (),,.5, €GL(), Sn €GL(9)} where n=p +q.
22

G ={gr:T€ &} where gr denotes transformation g;.S—->TS, VSE€ &,
v S Siz
0 Sn
Jos (Trg=1= |det(S;,)]" |det (Sy,) |, therefore P (S),=|det (S,,) " |det (Sy) |7 is
a SID on ¢,

Example 4.5 4 =GL@#), G={g 4,5:4,BEGL(n)} where g 4 p denotes
transformation g 4,8 X—AXB, VX EF

Choose X,=1, since for any Y € & we havea &y.1,(I)=Y and Jg(Y,I)(X)
(X xper = |det (¥)|", therefore P (Y),=|det(Y)|™ is a SID on &, .

-In each of above examples we may regard & as an open subset of approp-

Choose So=1, since for any S= ( )€ &, we have gs(/)=S and

-

riate dimensional Euclidean space and easily verify that G acts transitively
onb & and Jacobian is conjugately identical at I, Thus we may derive the
SID directly, However we have following example,

Example 4 6 & =T, G={g
ATB VT =(t;)), . ,€ & (n>1).

Choose To=1, we may easily verify that Jacobian is not conjugately iden-
tical at I, Therefore there aren’! any nonzero SIDs on .

Remark 4.1 i) In each of Example 4,1 -Example 4.5, 2 (Y ), is obviously

N
(A.B)* A, BET"} where & 4.8 denotes g(AYB),T———»

measurable since p(Y); is continuous, Although similar situation holds for most
common case, we may not assert the continuity of p(y),, generally from the
continuity of all first partial derivatives for g.

ii) Above examples show that Lemma 4.1 and Theorem 4.1 are very use—
ful results to determine all SIDs on ¢ (under transitive action of G) directly,
Furthermore, with the help of Lemma 4,1 and Theorem 4.1 we may determi-
ne SIDs on & under intransitive action of G by considering SIDs on each
orbit, Especially it is very easy to give the general formula for the case in
which & is the union of countable measurable orbits, However it is usually

more convenient to derive SID from (3.1).
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iii) Note that SID in Example 3,3 and that in Example 4,3 are different
from each other. Usually they are called left SID and right
SID respectively, The results about them are also stated respectively and simi
larly (see [1], (3], etc,). However this paper gives the unified results in The-
orem 4.1. .

Proposition 4,1 Suppose G,,G, are two subgroups of G and both of them
act transitively on &, fi(x), f;(x) are nonzero strictly invariant densities under
er G;,G, respectively, Then there exists a nonzero strictly invariant density on
% under G such that fi(x) =cf,(x) on & for some constant c,

Proof Let f(x) denote a nonzero SID on & under G. Obviously f(x) is
a SID on & under G;,i=1,2.It follows from Theorem 4,1 ii) that f(x)=c; f(x)
i=1,2,for some constants c¢;,c;, These equations certainly imply the desired
result ,

- By proposition 4.1 we may assert immediately from Example 3.3 and 4.3

that there are not any nonzero SIDs on & in Example 4,4 since groups in Ex-

ample 3.3 and 4.3 can be regarded as subgroups of the group in Example

4.6 and there is more difference than a multiplicative constant between SIDs

in Example 3.3 and 4. 3. « b
S. Proofs of Lemma 4,1 and Theorem 4,1

Proof of Lemma 4,1 The ”if part” is obvious from the hypothesis since
identity map belongs to G, (xo). For the “only if part” we need only to show
that for any y € &, £,8 €G,(xo) implies J, (X)s=xp =Jg (X) = xp.Note that g (xo)
=8, (xo) hence x,=g;'g (x,) therefore we have,

L=d o, (O, = U B () GO

= {Jg{’(u)ux,(x)"gl (x)}x=xo :Jg;‘ (u )u =8i(xo) =y']4’1 (x)x=xo .
Similarly
1= ng-l (M )u:ngz (x )x:xu .
Hence
ng (x )Fxo :ng (x )x:xot
Proof of Therem 4,1 i) ”if part”, Suppose f(x) is a nonzero strictly in-
variant density on &, Then for any y€ & and ¢,€G,(x,), we have
fg, xXNJ, () =f(x), VxEA,
Let X =Xy
f(gy(xo))‘lgy(x)x:xo = f(xo).
Equivalently
SO =) p D)=,

Obviously f(xy)=x0,then it follows from above equation that P(y)y, is a well-
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defined measurable functionon & since y€ & and g,€G,(x,) are arbitrary,
"only if part”, We need only to verify that p(y),, satisfies (3.2). For any

&8 E€Gand YEYZ, choose ¢ £ g(y)(xo) and g,€G,(xy) then &y X)) =8(¥) =
=& (gy(x0)). Thus
PN = Tog iy XV = Jpgy (e, (by Lemma 4,1)

={Jp (&, (XN, (x D}a=x, = {Jp (u )uzg,(x)ng(X)_}Fxo
=Sy W) u=gx) =y Jo, (X=x, e
Hence
PNy, (¥)={J;(u )u=yJ,,(x)x=xD}_‘Jg-(u du=y
=5 (0 =P, :
ii) The desired results follow from the ”if part” of i) immediately,
Remark 5.1 This paper shows the relations between invariant densities
and Jacobians, It gives a unified direct approach to invariant densities and
may be of independent interests of statistics. It may also present an elementa-
ry background for readers who are involved in haar measure theory and un-
able to spent much time on it, |
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