首页 | 官方网站   微博 | 高级检索  
     


Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Affiliation:1.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;2.School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:Doublet luminescence from hybrid metal trihalide perovskite semiconductors is observed along with materials processing when high-quality single crystals are obtainable. Yet, the underlying physical mechanism remains poorly understood. Here, we report controllable solution-processed crystallization that affords high-quality CH3NH3PbBr3 single crystals with atomically flat pristine surfaces. Front-face photoluminescence (PL) shows doublet luminescence components with variable relative intensities depending on the crystal surface conditions. We further find that the low-energy PL component with asymmetric spectral line-shape becomes predominant when the atomically flat crystal surfaces are passivated in the ion-abundant saturated solutions, while poor-quality single crystal with visually rough surface only gives the high-energy PL with symmetric line-shape. The asymmetric spectral line-shape of the low-energy PL matches perfectly with the simulated bandedge emission. Therefore, the low-energy PL component is attributable to the intrinsic bandedge emission from the crystal bulk while the high-energy one to surface-specific emission. Elliott fitting to the absorption data and multi-exponential fitting to the time-resolved photoluminescence traces jointly indicate the coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystals, thereby catching the physical merit that leads to the occurrence of doublet luminescence.
Keywords:semiconductor  crystal  surface  luminescence  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号