t

(3)129-134

Vol. 13, No. 2 June, 1997

0614.812

5,10,15,20-四(2-甲氧基苯基) 卟啉合钴的晶体和分子结构

焦向东1°黄锦汪2 计亮年2 王 欣3 ℃

(¹ 华南理工大学应用化学系,广州 510641)
(² 中山大学化学系,广州 510275)
(³ 兰州大学分析测试中心,兰州 730000)

用 X-射线测定了 5,10,15,20-四(2-甲氧基苯基)卟啉合钴[TMOPCo(1)]的晶体结构,实验表 明,晶体属正交晶系,空间群 Plea, a=11.544(2), b=14.294(2), c=23.984(2) Å, Γ=3957 Å³,Z =4, d,=1.329 g/cm³, μ(CuKa)=39.45 cm⁻¹, F(000)=1644, R=0.0657, Rw=0.0675, 讨论了邻 位取代基立体位阻对结构参数的影响,比较了各种钴卟啉配合物中的 Co--N 键键长,发现 TMOPCo (1)中存在明显的菱形畸变。

关键词: 卟啉<u>化合物 钴配合物</u> 晶体结构 TMOP(a)

对卟啉化合物进行结构研究主要是基于其在生命体系中的重要作用。前文我们曾报道 过卟啉化合物 TTOMPP·2GH₁₆^[1]及 Fe(TTOMP)Cl·CH₃OH^[2]的晶体和分子结构。人们在对 血红蛋白(Hb)和肌红蛋白(Mb)的深入研究,并用其他金属离子取代铁离子合成许多 Hb 和 Mb 的模拟化合物时,发现只有钴卟啉能够可逆载氧,并显示出铁体系的许多特征^[3],因此,对 钴卟啉的研究很有意义,并且相当活跃。本文报道 5, 10, 15, 20-四(2-甲氧基苯基)卟啉合钴 (I)[TMOPCo(I)]的晶体和分子结构。

1 实验部分

1.1 TMOPCo(I)的制备和单晶培养

配体 5,10,15,20-四(2-甲氧基苯基)卟啉(TMOP)按文献^[1]方法合成,用 UV-Vis、IR、'H NMR 等方法确证。将 1.0g 配体 TMOP 和 0.7g Co(Ac)₂ 溶于 100 ml 冰醋酸中,加热回流,电 磁搅拌 0.5h,薄层层析检查反应基本完全(反应过程中保持干燥和避光),减压浓缩至 50 ml,加入等量甲醇,放置,抽滤,用甲醇洗涤,风干,粗产品在硅胶湿柱中用氯仿作淋洗剂进行 柱分离,收集橙红色带,浓缩,用氯仿-甲醇重结晶,真空干燥,得产品 TMOPCo(1)0.5g,产率 46.8%(UV-Vis 光谱 λ_{m} ,为 416.7, 529.3 nm)。

将 100 mg TMOPCo(1)溶于 10 ml 氯仿 : 正庚烷(1/^{1/} 6 : 1)的混合溶剂中,置于正庚烷 气氛中,一个月后得片状紫红色单晶。

* 通讯联系人。

收稿日期:1996-04-29。 收修改稿日期:1996-12-17。

国家自然科学基金、广东省自然科学基金资助项目。

第一作者:焦向东,男.29岁,讲师;研究方向;生物无机化学。

第13卷

1.2 单晶的结构分析

选取尺寸为 0.4×0.45×0.6 mm 的单晶样品、置于 CAD4 型四圆衍射仪上,室温下测定 晶胞参数,并收集衍射点,用石墨单色器 CuKa 射线(λ =1.5418Å),以变速 θ -2 θ 扫描方式, 在 2.0°<2 θ <56°范围内共收集 2939 个独立衍射点,其中 1169 个[$I \ge 3\sigma(I)$]为独立可观测 点。该化合物晶体结构属正交晶系,空间群为 Pixa, a=11.544(2), b=14.294(2), c=23.984 (2)Å,V=3957Å³,Z=4, d_c =1.329 g/cm³, μ =39.45 cm⁻¹, F(000)=1644。所有非氢原子 坐标用直接法和 Fourier 合成法获得,用全矩阵最小二乘法对所有非氢原子进行各向异性修 正,所有氢原子坐标按理论加氢法和差值 Fourier 合成法得到,将氢原子坐标和各向同性参数 连同非氢原子坐标和各向异性热参数,经最小二乘法修正至收敛,最终 R=0.0657, R_W =0. 0675、其中 R= Σ [F_o] - $|F_c$] / Σ [F_o]、 R_W =[$\Sigma W(|F_o| - |F_c|)^2/\Sigma W(F_o)^2$]^{1/2}, W=1。最后一 轮修正的残存差 Fourier 峰高度 $\Delta \rho_{ma}$,=0.93 e/Å³。所有计算均在 PDP11/44 计算机上采用 SDP 计算程序完成。

2 结果与讨论

TMOPCo(I)的全部非氢原子坐标列于表 1,主要键长、键角分别列于表 2~3、分子结构图 见图 1,TMOPCo(I)在晶胞中的分子堆积图见 图 2。

TMOPCo(1)的卟啉骨架原子基本共面,Co (1)原子位于该平面上,性质相近的化学键和键 角基本上具有四重轴对称(D_{4h})。如果用 C_a 和 C_b 表示吡咯环上 a和 β 碳,Cm 表示次甲基碳,Cphen 表示苯环碳,我们可以得到卟啉骨架平面的键长 和键角的平均值;N-C_a=1.384(7),C_a-C_b=1. 448(9),C_b-C_b=1、329(9),C_a-Cm=1.374 (9),Cm-Cphen=1.522(10)Å;C_a-N-C_a= 105.1(6),N-C_a-C_b=110.2(6),N-C_a-Cm=

图 1 TMOPCo(1)的分子结构图

Fig. 1 Molecular stereo configuration for TMOPCo(1)

 $125.9(7), C_{a}-C_{b}-C_{b}=107.4(7), C_{a}-Cm-C_{a}=123.1(7), C_{a}-Cm-Cphen=118.4(7)^{\circ}$

TMOPCo(I)中卟啉环上相邻苯环之间的二面角为 96.3°,卟啉环骨架平面与对应苯环 平面之间的二面夹角分别是 78.5 和 85.5°,比 TPMP(5,10,15,20-四(4-甲氧基苯基)卟啉) 骨架中对应的二面角(62.0,69.7°).⁵¹大得多,并且接近于 90.0°,显然,这是由于 TMOPCo (I)苯环上的甲氧基处于邻位,引起很大的邻位空间位阻所造成的。与通常的卟啉化合物相 比,在 TMOPCo(I)中,连接卟啉环骨架次甲基碳与苯环之间的 Cm-Cphen 键键长分别是 C₁ -C₁₁=1、535(11),C₆-C₁₈=1、508(8) Å,更接近于通常的 C-C 单键键长(1、54Å)。这说明, TMOPCo(I)中卟啉骨架平面与苯环平面之间的非平面共轭效应^[1]较小,这与邻位甲氧基引 起的卟啉环骨架平面与苯环平面间的二面角较大是一致的。

• 131 •

图 2 TMOPCo(1)在晶胞中的分子堆积图 Fig. 2 Molecular packing of TMOPCo(1) in the cell

· 表 1 非氢原子座标及热参数

atom	T	¥	=	$B \stackrel{2}{\downarrow} 2$
Co	0.500	0.500	0.000	3. 69 (4)
01	0.8263(9)	0.2710(9)	0.0871(5)	10.2(3)
02	0.390(1)	0.5853(9)	0.2116(4)	12.1(4)
NI	0.4840(7)	0.4111(6)	0.0604(3)	4.0(2)
N2	0.3817(7)	0 5811(6)	0.0355(3)	4.2(2)
C 1	0.627(1)	0.2913(9)	0.0320(5)	5.9(3)
C2	0.5413(9)	0.3273(8)	0.0682(4)	4.2(3)
C3	0.508(1)	0.2823(8)	0.1208(4)	4.8(3)
C4	0.430(1)	0.3381(9)	0.1441(4)	4.9(3)
C5	0.4121(9)	0.4174(8)	0.1083(4)	4.2(3)
C6	0.3392(9)	0.4896(9)	0.1194(4)	4.6(3)
C7	0.322(1)	0.5640(9)	0.0852(4)	4.8(3)
C8	0.245(1)	0.641(1)	0.0950(5)	6.3(3)
C9	0.255(1)	0.7011(9)	0.0531(5)	6.6(3)
C10	0.342(1)	0.6627(9)	0.0158(5)	5.2(3)
C11	0.672(1)	0.193(1)	0.0454(5)	7.0(4)
C12	0.615(1)	0. [15(])	0.0319(7)	8.9(5)
C13	0.656(2)	0.035(1)	0.0468(9)	12.9(7)
C14	0.768(1)	0.030(1)	0.0770(6)	9.7(5)
C15	0.823(1)	0.1008(9)	0.0901(6)	8, 3; 4)

• •

· .

.

1.5

- E

ł

•

.

.

•

a

.

.

第 13 卷

atom	z	ð	a a a a a a a a a a a a a a a a a a a	B Å ²
C16	0.773(1)	0.188(1)	0.0732(6)	8.5(4)
217	0.922(2)	0.261(4)	0.121(1)	30. (2)
C18	0.266(1)	0.483(1)	0.1713(4)	6.3(3)
C19	0.172(1)	0.422(1)	0.1721(6)	11.1(6)
C20	0.114(1)	0.415(2)	0.2238(8)	13.3(7)
C21	0.153(2)	0.466(2)	0,2700(7)	14.2(7)
C22	0.241(2)	0.525(1)	0.2683(5)	11.0(6)
C23	0.299(1)	0.530(1)	0.2165(5)	8.0(4)
C24	0.421(2)	0.647(2)	0.2558(9)	22.9(9)

表 2 TMOPCo(I)的主要键长 Table 2 Selected Bond Lengths for TMOPCo(I)

bond	length (À)	bond	length (Ą)
Co-NI	1.935(5)	Co-N2	1.983(5)
Co-N11	1.936(5)	Co- N2'	1.983(5)
N1-C2	1.381(7)	N1-C5	1.419(7)
N2-C7	1.398(7)	N2-C10	1.339(8)
C1-C2	1.412(9)	C2-C3	1.465(8)
C3-C4	1.328(8)	C4-C5	1. 438(9)
C5-C6	[. 359(9)	C6-C7	1.356(9)
C7-C8	I. 434(9)	C8-C9	1.329(9)
C9-C10	1.454(9)	C10-C1	1,369(9)
C1-C11	1.535(11)	C6-C18	1,508(8)
C11-C12	1.339(12)	C12-C13	1.286(14)
C13-C14	1, 491(16)	C[4-C15	1,233(14)
C15-C16	1.431(14)	C16-C11	1 341(12)
C18-C19	1.388(11)	C19-C20	1, 417(13)
C20-C21	1.402(16)	C21-C22	1,319(16)
C22-C23	1.408(11)	C23-C18	1.329(11)
01-C16	1.379(11)	01-C17	1.391(12)
O2-C23	1.324(9)	O2-C24	1,428(13)

表 3 TMOPCo(I)的主要键角

Table 3 Selected Bond Angles for TMOPCo(1)			
angles	degree	angles	degree
N1-Co-N1'	181. (1)	N2-Co-N2'	180. (1)
N1-Co-N2	89.9(3)	NI-Co-N2'	90.2(3)
NI'-Co-N2	90.2(3)	N ['-Co-N2'	89.9(3)
C16-O1-C17	114. (1)	C23-O2-C24	120. 4(9)
C2-N1-C5	103.0(5)	C7-N2-C10	106.7(6)
C2-C1-C10	[2].6(7)	C2-C1-C11	116. 4(7)
C10-C1-C11	121-7(7)	N1-C2-C1	•124.6(6)
N1-C2-C3	119. (6)	CI-C2-C3	123. 4(7)
C2-C3-C4	105.9(6)	C3-C4-C5	108.8(6)
N]-C5-C4	110.4(6)	N1-C5-C6	124.6(6)
C4-C5-C6	125.0(7)	C5-C6-C7	124.5(7)
C5-C6-C18	117.6(7)	C7 C6-C18	117.9(7)
N2-C7-C6	125.7(7)	N2-C7-C8	108.0(7)

···· _ ···· _ · · · _ _ _

133

angles	degree	angles	degree
C6-C7-C8	126.3(7)	C7-C8-C9	108. 8(7)
C8-C9-C10	106.1(7)	N2-C10-C1	128.6(7)
N2-C10-C9	110.4(6)	CI-C10-C9	121.0(8)
C1-C11-C12	123. (1)	C1-C11-C16	117. (2)
C12-C11-C16	(20. (2)	CI1-C12-C13	120. (2)
C12-C13-C14	119. (1)	C13-C14-C15	122. (1)
C14-C15-C16	116.(1)	01-C16-C11	118. (1)
OI-C16-C15	120. (1)	C11-C16-C15	122. (1)
C6-C18-C19	119.0(7)	C6-C18-C23	119.1(8)
C19-C18-C23	121.7(8)	C18-C19-C20	115. (2)
C19-C20-C21	121.(1)	C20-C21-C22	124. (1)
C21-C22-C23	115.(1)	O2-C23-C18	116.9(8)
O2-C23-C22	120. (2)	C18-C23-C22	125. (2)

值得注意的是,TMOPCo(I)分子结构中,存在两种类型的 Co-N 键:Co-N₂和 Co-N₂' 键键长为 1.983(5) Å,与五配位和六配位 Co(I)卟啉中 Co-N 键键长(1.977(6)~2.000 (4))^[6-10]相近;而 Co-N₁和 Co-N₁'键键长则只有 1.936(5) Å,比 TPPCo(I)的 Co-N 键键 长(1.949(3) Å)^[11]及五配位和六配位 Co(I)卟啉中 Co-N 键键长(1.948(4),1.954(6) Å)^[12]都要短;这两种类型的 Co-N 键的存在使 TMOPCo(I)中卟啉环骨架中局部的四个氮 原子畸变成一个很明显的菱形,Co(I)则位于这个菱形对角线的交点。这种畸变使 TMOPCo (I)中四个 N 原子的局部对称性由 D_m 降为 C_m 。这种明显的局部畸变现象是很少见的。当然, 由于这种嘧变是局部的,所以它对整个卟啉骨架基本具有的 D_m 对称性的影响很小。造成这两 种类型的 Co-N 键的原因正在研究之中。

参考文献

- [1] 焦向东、黄锦汪、刘海洋、计亮年,结构化学,1998,15(3),205.
- [2] Ji, L. N.; Liu, M.; Huang, S. H.; Hu, G. Z.; Zhou, Z. Y.; Koh, L. L.; Hsieh, A. K. Inverg. Cham. Acta, 1990, 174,21.

. . . .

~.

.

- [3] Hanson, L. K.; Chang, C. K. J. Am. Chem. Soc., 1981, 103, 663.
- [4] Ji, L. N. ; Liu, M. ; Hsieh, A. K. Inorg. Clam. Acta, 1990, 178,59.
- [5] 焦向东,中山大学化学系博士论文,1995,126.
- [6] Scheidt, W.R. J. Am. Chem. Soc., 1974, 96, 84.
- [7] Scheidt, W. R. J. Am. Chem. Soc., 1974, 96, 90.
- [8] Dwyer, P. N.; Madura, P.; Scheidt, W. R. J. Am. Chem. Soc. , 1974, 96, 4815.
- [9] Scheidt, W. R.; Ramanuja, J. A. Inung. Chem., 1975, 14, 2643.
- [10] Little, R. G.; Ibers, J. A. J. Am. Chem. Soc., 1974, 98, 4440.
- [11] Madura, P., Scheidt, W.R. Inorg. Chem. 1976, 15, 3182.
- [12] Kadak, J. A., Scheidt, W. R. Inorg. Chem., 1974, 13, 1875

维普资讯 http://www.cqvip.com

5

第13卷

CRYSTAL AND MOLECULAR STRUCTURE OF MESO-TETRA(2-METHOXYLPHENYL)PORPHINATOCOBALT(1)

Jiao Xiangdong¹ Huang Jinwang² Ji Liangnian² Wang Xing'

(¹Department of Applied Chemistry, South Chava ('unressity of Technology, Guangshon 510641) (²Department of Chemistry, Zhangshan University, Guangshon 510275) (³Analysis and Testing Centre, Lanchen University, Lanchon 730000)

Crystal and molecular structure of meso-tetra(2-methoxylphenyl) porphinatocobalt(I) [TMOP-Co(I)] have been determined by single crystal X-ray diffraction technique. The crystal is orthorhombic, space group *Pbca*, a = 11.544(2), b = 14.294(2), c = 23.984(2) Å, V = 173957Å³, Z = 4, $D_c = 1.329$ g/cm³, F(000) = 1644. The structure was solved by direct methods and Fouries techniques. Least squares refinement on the basis of 1169 unique reflections with $I \ge 3\sigma(I)$ led to final R = 0.0657 and $R_w = 0.0675$. Effect of hindance of substitutents of porphyrin on the structure parameters of porphyrin was discussed, comparison of Co-N bond length among some porphinatocobalts has been made, and the rhombic distortion existing in TMOPCo(I) has been found.

Keywords: crystal structure porphyrin cobalt complex