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Existence and Uniqueness of Solutions to
Time-delays Stochastic Fractional Differential
Equations with Non-Lipschitz Coefficients

Chengyun Long' and Jingli Xie!'

Abstract In this paper, we consider the existence and uniqueness of solution-
s to time-varying delays stochastic fractional differential equations (SFDEs)
with non-Lipschitz coefficients. By using fractional calculus and stochastic
analysis, we can obtain the existence result of solutions for stochastic fraction-
al differential equations.
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1. Introduction

In recent years, fractional differential equation has been a growing field of research
because of their widespread applications in many real life problems, such as im-
age processing, biology, economics, fitting of experimental data and control theory.
Classical theory and applications of fractional differential equations are presented
in the monographs (see [9,10,15,17,19]). Stochastic differential equations have be-
come an active area of investigation due to their applications in finance markets,
biology, telecommunications networks and other fields [2,5,6,13,16]. Further, many
authors studied the existence, uniqueness, stability and controllability of solutions
for stochastic differential equations by using stochastic analysis theory and fixed
point theorem in related literature, see [3,7,8,20-22].

In the paper [1], Abouagwa et al. consider stochastic fractional differential
equations of It6-Doob type in the following form:

dx(t) = b(t,z(t))dt + o1 (t, z(t))dB(t) + o2 (t, 2(x)) (dt)*, t € [0,T],
x(t) = zo € R",

where % < a < 1, T denotes a positive real number, b : [0,7] x R* — R", oy :
[0,T]xR™ — R™ ™ and o5 : [0,T] x R" — R™ are measurable continuous functions.
B(t) is Brownian motion defined on the filtered probability space {Q, F, {F; }1>0, P}.
Approximation properties for solutions to equations were established by fractional

calculus, stochastic analysis, elementary inequalities and so on.
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Luo et al. [11] investigate a class of stochastic fractional differential equations
with time-delays

dx(t) = b(t, x(t), z(t — 7))dt + o1 (t, x(t), z(t — 7))dB(t)
+ oo (t, x(t), z(t — 7)) (dt)™, t € J,
1’(9) = @(9)7 0 e [_7—7 0}

where J = [0,7], $ < a <1,b:[0,T] x R" = R", gy : [0,T] x R" — R™*™ and
o9 : [0, T]xR™ — R™ are measurable continuous functions. B(t) is Brownian motion
defined on the filtered probability space {Q, F,{F;}i>0,P}. ¢ : [-7,0] > R" is a
continuous function satisfying E|¢(6)|> < co. Under some assumptions, the author
obtained an averaging principle for the solution of the considered equations.

Motivated by the discussion above, we are concerned with the following time-
varying delays in stochastic fractional differential equations

dz(t) = b(t, 2(t), z(t — 6(2)))dt + o1 (t, 2(t), 2(t — 6(t)))dB(t)
+ oo (t, 2(t), 2(t — () (dt)*, t € J, (1.1)
z(t) = ¢(t), t € [-0,0],

where % < a<1,J=][-4T], T denotes a positive real number, 0 < §(¢t) < 9,
b: JXR*"xR" - R", g1 : JXR" x R" = R"™™ g5 : J xR" x R® — R™ are
measurable continuous functions, B(t) is Brownian motion defined on the filtered
probability space {Q, F,{Fi}i>0,P}. ¢ : [-0,0] — R™ is a continuous function

satisfying E|¢(t)|? < co. z(t) denotes a n-dimensional random variable.

2. Preliminaries

For the sake of smooth follow-up work, we briefly give the preparatory work in this
section.

Definition 2.1. (Definition 2.1, [1]) For any « € (0,1) and a function f € L[[0, T];
R™], the Riemann-Liouville fractional integral operator of order « is defined for all
0<t<Tby

1

I°f(t) = F(a)/o (t —s)*"1f(s)ds, t >0,

where I'(+) is the Gamma function.

Lemma 2.1. (Lemma 2.1, [1]) Let f(t) be a continuous function, then its integra-
tion with respect to (dt)*, 0 < a <1 is defined by

/0 £(5)(ds)* = a / (t— )" f(s)ds, 1> > 0.

Definition 2.2. An R"-value stochastic process x(t)___, . is called a unique so-
lution to SFDEs (1.1) if z(¢) satisfies the following: o
(i) z(t) a continuous process of adaptation;
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(if) b(t, 2(t), y(t)), oo (t, x(t),y(t)) € L1(J;R™) and o3 (t, 2(t), y(t)) € L2(J;R™™);

(iii) For all t € [—7,T], x(t) satisfies the following integral equation:

G0 + Jo b(s,x(s).2(s = 8(s)) ds + [y o1 (s,(s), 2(s — (s))) dB(s)

x(t) = +af0 (t—s)* Loy (s,x(s),z(s —6(s)))ds, t € J
¢(t)7t € [_5a 0]7
(2.1)

where 2(0) = ¢ = {p(t), —d <t <0}
(iv) For all t € [—0, T}, other solution Z(t), we have P{xz(¢t) = &(¢t)} = 1.
Lemma 2.2. (Lemma 2.4, [11]) Let m € N and x1, xa, - -+, T, be nonnegative

real numbers. Then

i=1

m p m
(le) Smp_lzxf, for p>1.
i=1

3. Existence and uniqueness of solutions to SFDEs

In this section, we will prove the existence and uniqueness of solutions to SFDEs
(1.1).

In order to attain the solution of SFDEs (1.1), we impose the following two
hypotheses.
(A1) (Non-Lipschitz condition). There exists a function G(¢,z,y) : [0, +00) x R x
R+ — R* such that:
(i) For any fixed x,y < 0, t € [0, +00) — G(t,z,y) € RT is locally integrable, and
for any fixed t > 0, z,y € R* — G(t,z,y) € R is continuous, non-decreasing,
concave, and satisfy G(t,0,0) = 0 and for any fixed ¢, [, [y, mdxdy = 4o00.
(ii) For any fixed ¢ > 0 and z,y € R™, the following inequality holds:

|b(t?x1ay1) - b(t’any2)|2 + |O-1(tal‘17 yl) — 01 (ta'r27y2)|2
+ o2ty 1, 91) — oa(t, w2, 92)[* < G (8, |21 — y1[% |22 — yol?) -
(iii) For every t € Rt and any two non-negative functions X (t), Y (¢) such that

AX () + V(1) < K/Ot G(s, X(5), Y (s))ds,

where A and K are non-negative constant, we have X (t) and Y (¢) = 0.
(A2) Let b(t,0,0), o1(¢,0,0), o2(t,0,0) € L2([0,T]) and for all ¢ € [0,T], it follows
that

[b(t,0,0)> + |o1(£,0,0)[* + |02(t,0,0)]* < K,

where K > 0 is a constant.
For any integer n > 1, define z,,(¢) = ¢(t) for all —7 <¢ <0 and

2 (t) =¢o+/0tb<s,xn (s—i),xn (s—i—é(s)))ds
I B
+a/0t(t—s)“_102 <S,xn <s—71l>xn <s—;—5(s))>ds, 0<t<T,

3
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where ¢g = ¢(0).

Theorem 3.1. Under the hypotheses A1-A2, there exists a unique solution x(t) to
SFDEs (1.1).

Proof. The proof will be split into three steps.
Step 1. The boundedness of the sequence {z,(t), n > 1}.
By Lemma 2.2, we have

(s o))
0<s<t

t
:4E|¢0|2+4E’/0 b(s,xn (s—i),xn (s—i—é(s)))ds

2

i (g [ (s (5 1) (- o))
+ 407K /Ot(t Ly (w <s _ i) . (s _ % - 5(s)>) as|

By Lemma 2.2, Burkholder-Davis-Gundy inequality, Cauchy-Schwarz inequality
and hypotheses A1-A2; we have

(s 12,01

0<s<t

S4E¢02+8T/OtE<'b (s (5= 1) can (5= £ - 50))
2
+32/0tE<

T2a—1 t
2
E
+ 8« 20{_1/0 (

—b(s,0,0)

— 01(8,07())

+1b(s,0,0)|? >ds

2

+|o1(s,0,0)? >ds

D)

+ |o2(s,0,0)? >d$
9 T2a—1
<4E |¢o|” +8 (44T +a?
2a0 — 1

[ (move(sefe (- D) el (o L)) )

Given that G(t, z,y) is concave, there exist az(t) > 0, as(t) > 0, as(t) > 0 such that

— 02(s,0,0)

2
,E

Gt x,y) < a3(t) + as(t)r +as(t)y, =, y >0,

T T T 3.9
/0 as(t)dt < oo, /0 ay(t)dt < oo, /0 as(t)dt < oo. (3.2)
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Then,

£ (s [oa(6) )

0<s<t

¢ ¢
<C + (s (/ E ( sup xn(31)|2> ds +/ E ( sup |zn(s1 — 5(5))|2> ds) 7
0 0<s51<s 0 0<s1<s

where €} = 4E |¢o|* + 8T (4 +T +a? 7;;:;) (Kb + sup ag(t)),

0<t<T

Cy=8 (4 +T+a? gia:11> max{ sup aq(t), sup a5(t)}.
0<t<T 0<t<T

Let Q(s) = E < sup |zn(51)|2>, and E < sup |xn(sl)|2) = 0, then we have

0<s1<s —0<s51<0

(s~ 5(6) = & ( sup_loulon ~ 367 )

0<s1<s

Hence, we have

Q(t) < Cy + Cy (/OtQ(s)ds + /Ot (s — 6(3))ds).

Let T(t) = sup (), for all t € [0,T7], then Q(t) < Y(t), and Q(t — (s)) < Y(¢).
0e[—4,t]
Therefore, one can obtain

Q(t) < Cy + 20, </0t T(s)ds>.

Note that for all 8 € [0,¢], we can obtain

Q(0) < C; + 20, (/06 T(s)ds) < C) 420, (/Ot T(s)ds)

and

T(t)= sup Q(F) < max{ sup Q(0), sup Q(H)} < Cy + 20, (/Ot’r(s)ds)

0e[—4,t] 0€[—4,0] 0e[0,t]
In terms of Gronwall-Bellman inequality, we get
T(t) < Cre?ct,

Then, we have

(s (9 < it =

0<s<t

where C7, Cy and C3 are positive constants. Therefore, the boundedness of the
sequence {z,(t), n > 1} has been proved.
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Step 2. {z,(t), n > 1} is continuous on [0,7]. For 0 < s < ¢t < T and any
integer n > 1, by Lemma 2.2 and equation (3.1), we have

Biea(t) ~ a(9)

oot
[T )

[t (o) o (i)

T R e Py O e Y O e C) ) I

With the help of Lemma 2.2, It isometry, Cauchy-Schwarz inequality and hypothe-
ses A1-A2, we have

2
<3E

2
+3E

+30°E

2

Elwn(t) — zn(s)|?

§3(T—s)/:IE’b<u,xn (u—i)xn (u—i—é(s))) " i
+3/:E o (uxn (UD o <u;5(s))> oy
+30°E (02% o (u,xn (u - i) . (u SER 5(s)>) 2)

X

/St(t — ) du + /Os (t—w)* ' = (s—u)* '] du

o4t [ (1906 (wfo (o 1]
(- D) e (- o)

,E
From above inequality (3.2) and Step 1, we have

+6

Kb-l—G(S,E

Bl (t) — 2, (s)|> < Cu(t — 5) + Cs (t — 5)**

where C5 = 6 {Kb + ( sup ag(t)> + 2C4 max{ sup ay4(t), sup a5(t)H, and
0<t<T 0<t<T 0<t<T
Cy=Cs5(1+T—5).

Step 3. The sequence {X,(t), n > 1} is Cauchy sequence. For integer 1 < n <
m, we have

E ( sup |z, (s) — wm(5)|2)

0<s<t

<3E’/Otb<s7xn (s—i) ,Tn, (s—i—5(8)>)
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(o (= L) o (s 00))
Folon ) )
t - <S’xm< m m
[ AR A
N A

With the help of Lemma 2.2, Cauchy-Schwarz inequality and Burkholder-Davis-
Gundy inequality, we have

+ 3E

+30°E

B ( s [o(6) — o)) (33)

0<it

N

A R

+12/0t1+301 (sxn (s—i)mn (s—i—é(s))) (3.6)

— o (s,xm <s _ ;) . (s _ % _ 5(s)>) "4 (37

+ 302 Zji /OtIE o (s,acn (s - i) o (s S 5(5))> (3.8)
oDy 2

ds.
Applying the plus and minus technique as well as hypothesis A1(b) implies

(3.9)

E (sup o)~ on o))

0<s<t
¢ 1 1

<6T [ Eb|s,zn|s——),zn|s———0(s)
0 n n

s (s Do (o L st
ot [ 5 (s (5 D) (5 219
s (s Yo (o L st
(
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(s (o Do (o L)
(oo (05) o (oo

2
ds

t
+24/E
0

2
ds
T2o-1 ot 1 1
2 —_ — —_ — —
+ 6av 2a—1/0 E|os (s,zn (s n),xn <s - (5(5)))
2
—02<s,xm(s—1),xm<s—1—5(s)>> ds
n n
T2t 1 1 1
2 —_ — —
+ 6av 2@_1/0 E|os (s,xm (s n),xm <s . 5(s)>>
1 1 2
—02<S,$m(8—)71‘m<8——5(8))) ds
m

m
Tﬂa—l t
<6 (4—|—T+0422 )/ G(s,]E( sup
a—1 0 0<u<s
]E< sup
0<u<s
IQa—l t 1 1
+6(4+5T+a2 )/ G(S,E( sup |Tm (s—)—xm (s—)
200 — 1 0 0<u<s m n

o) 20

From Step 2, we have

E (sup frus)~ on (5

0<s<t

Iﬂafl t
<6 <4+T+oz22 )/ G(E( sup mnw)—xm(u)?)
a—1 0 0<u<s

E ( sup |an(u — 8(w)) — T (u — (5(u))|2) )ds

0<u<s

T2a—1 t 1 1
+6(4+T+a2 )/G(s,C’4(—)
20—-1) J n m
1 1\ 11 1 1\
PYCVPYEIEL PP TIEA E
nom nom nom

Let Q4(s) = ]E( sup |, (u) — zm(u)Q), and E < sup |, (u) — xm(u)|2) =0,

0<u<s —7<u<0

then we have

0<u<s

(5 = 560) = E ( sup_ [z (0 8(00) ~ 2l — 5}
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Hence, we have

2a—1 t
Qi(t) <6 <4+T+ a2§ 1) / G (5,Q1(s), (s —d(s))) ds
Q= 0
2a—1 t
+6(4+T+a2T )/G(S,C4(1—1>
2a—-1) J nom
1 1\* 11 1 1\*
el et 1) )
n m n m n m

Let T1(t) = sup Q4(0), for all ¢t € [0,T], then Q4(¢) < T1(t), and Q1 (¢t — d(t)) <

oe[—r,t]
T1(t). Therefore, one can obtain

2a—1 t
04 (t) <6 <4+T+a2§a — 1) /0 G (s,T1(s),T1(s)) ds

T2t [t 11
+6<4+T+a2 >/ G<S,C’4 <)
2—1) J, nom
1 1\* 11 1 1\*
o (A1) e (P DY (- 1) s
n m n m n m

Note that for all 8 € [0,¢], we can obtain

2a—1

t
0.(6) <6 <4+T+a2T )/ G (5, T1(5), T1(5)) ds
205—1 0
2c—1 t
+6<4+T+a2T )/ G(s,C4 <1—1>
20 -1/ Jy nom
1 1\* 1 1 1 1\*
a2 a2 e (-2) e
n m n m n m

Ti(t) = sup Q4(f) <max< sup Q1(0), sup 21(0)
oe[—T,t] 0e[—r,0] 0€l0,t]

2a—1 t
<6 <4+T+a22 1)/ G (5,71 (5), X1 (s)) ds
@2/ Jo (3.10)
T2\ [t 11
+6<4+T+a2 )/ G<S,C4<—)
20—-1) J, n.om
1 1\™ 11 1 1\™
+C5 | ——— Oyl ——— ) +C5 [ —— — ds.
n m n o m n m
Let
Ti(t) = limsupE( sup |zn(s) — xm(s)|2) . (3.11)
n,m—-oo 0<s<t

Then, from above equations (3.10)-(3.11) together with Fatou’s Lemma, it yields
2a—1

200 — 1

Ti(t) < AT (H)+T1(t) <6 (4 +T +a? ) /tG(s,Tl(s),Tl(s))ds. (3.12)
0
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Finally, from equation (3.12) and hypothesis Al(c), we obtain

T, (t) = limsup E < sup |zn(s) — xm(s)2> =0,

n,m— oo 0<s<t

indicating that {z,(t), n > 1} is a Cauchy sequence. The Borel-Cantelli lemma

shows that, as n — oo, z,(t) — z(t) uniformly for ¢ € [0,7]. Hence, by taking

limits on both sides of equation (3.1), we obtain that z(t), t € [0,T7], is a solution

to equation (1.1) with the property E  sup |z(s)|*
0<s<t

this completes the proof of the existence. Now, the uniqueness of solution can be

obtained by the same procedure as Step 3. Hence, the proof of Theorem 3.1 is

completed. O

) < oo for all t € [0,7], and

Remark 3.1. It should be pointed out that the addressed existence is more general
than the existence concept investigated in [1]. In fact, our existence criterion can
be reduced to that in [1] when G(¢,z(t), z(t)) = G(t, z(t)).

4. Conclusion

In this work, the objective is to study the existence and uniqueness of FSDEs with
time delays by using the novel Caratheodory approximation and the weaker non-
Lipschitz condition. Our future work will focus on exploring Ulam-Hyers stability
of various types of fractional differential equations with weaker conditions, and the
explored conditions can be applied to a wider range of differential equations.
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