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Homoclinic Orbits of a Quadratic Isochronous
System by the Perturbation-incremental Method∗
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Abstract In this paper, the perturbation-incremental method is presented
for the analysis of a quadratic isochronous system. This method combines the
remarkable characteristics of the perturbation method and the incremental
method. The first step is the perturbation method. Assume that the param-
eter λ is small, i.e. λ ≈ 0, the initial expression of the homoclinic orbit is
obtained. The second step is the parameter incremental method. By extend-
ing the solution corresponding to small parameters to large parameters, we
can get the analytical-expressions of homoclinic orbits.
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1. Introduction

Considering the following plane system [7,33]


dx

dt
= y + λf(x, y),

dy

dt
= −g(x) + λh(x, y),

(1.1)

where f , g and h are arbitrary nonlinear functions of their arguments, λ is a real
parameter of arbitrary magnitude. If f(0, 0)=g(0)=h(0, 0)=0, the origin is a singu-
lar point. When 0 < λ < λ, equation (1.1) has a limit cycle around the origin. On
the other hand, if λ is specified, then the analytical-expressions of limit cycles and
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homoclinic (heteroclinic) orbits will be calculated as given before in [5, 14, 31]. In
practice, many quantitative methods are used to solve the analytical-expressions of
limit cycles and homoclinic orbits such as Incremental Harmonic Balance method
(IHB) [18, 19], Elliptic-Perturbation method (EP) [6, 10], Lindst-Poincaré method
(LP) [11,27], perturbation iteration method [4].

In recent years, many scholars have begun to pay attention to limit cycle bi-
furcations of isochronous systems [2,22,23,26,29]. Loud [24] has divided quadratic
polynomial differential systems having an isochronous center into four classes S1,
S2, S3 and S4. Yang [35] obtained the upper bounds of the number of limit cycles
bifurcating from the period annuli of quadratic isochronous systems (S1 and S2)
by using the Picard-Fuchs equation. Li [20] investigated the number of limit cycles
which bifurcate from the period annulus of a class of quadratic isochronous system
(S3).

In this article, the perturbation-incremental method [5, 31] is given for the cal-
culation of homoclinic orbits of quadratic isochronous differential systems [20, 35].
This method is especially suitable for some systems with parameters. When param-
eters of systems are small, the perturbation method is used to give the zero-order
perturbation solution the analytical-expressions of homoclinic orbits. When param-
eters are gradually increasing, the parameter incremental method and the iterative
method are used to extend the solution corresponding to small parameters to large
parameters, and the analytical-expressions of homoclinic orbits satisfying the re-
quired accuracy are obtained.

Perturbation-incremental method is a new method combining the semi-analytical
method with the numerical method, and has been developed for a long time. Xu
et al. [32] applied the perturbation-incremental method to the calculation of limit
cycles and homoclinic (heteroclinic) orbits of strong nonlinear oscillators in electri-
cal engineering. Huang et al. [16, 17] used the perturbation-incremental method to
discuss the limit cycles, homoclinic orbits and the quantitative analysis of parame-
ters bifurcation of Bogdanov-Takens system. Chen et al. [8] and Lin [21] used the
perturbation-incremental method to study the approximate solution of semi-stable
limit cycles of Liénard equation, and as well calculation of multiple limit cycles
with their bifurcation values. In the following years, the perturbation-incremental
method has been widely used in the calculation of periodic solutions of nonlinear
systems of delay differential equations [3, 12, 30], bifurcation of impulsive system-
s [28], calculation of limit cycles, homoclinic (heteroclinic) orbits and bifurcation of
general dynamical systems [1, 9, 13,15,25].

Next, we will describe the main contents of this method and give an example.

2. Perturbation-incremental method

The common nonlinear oscillators systems and quadratic systems can be reduced
to the form of (1.1). We introduce a nonlinear time transformation of the form

dϕ

dt
= Φ(ϕ), Φ(ϕ+ 2π) = Φ(ϕ), (2.1)

where ϕ is the new time. In the ϕ domain, equation (1.1) has the form

Φ
dx

dϕ
= y + λf(x, y), Φ

dy

dϕ
= −g(x) + λh(x, y). (2.2)
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From the solution of the first equation of (2.2), y is substituted into the second
equation

Φ
d

dϕ

(
Φ
dx

dϕ

)
− λΦ

df

dϕ
= −g(x) + λh. (2.3)

Assuming that λ ≈ 0 and the origin of the (x, y) phase plane is an equilibrium
point interior to the limit cycle, then the zero-order perturbation solution of limit
cycles [34] can be supposed as

x = acosϕ+ b, y = −aΦsinϕ, (2.4)

where a is the amplitude and b is the bias.

Multiplying both sides of equation (2.3) by
dx

dϕ
= −asinϕ and then integrating,

we have

1

2
(Φsinϕ)2 +

v(acosϕ+ b)− v(a+ b)

a2
+ λ

Φfsinϕ

a
− λ

∫ ϕ

0

[
f d(Φsinθ)

dθ − hsinθ
]

a
dθ = 0,

(2.5)

where

v(x) =

∫ x

0

g(u)du. (2.6)

For simplicity, let

ṽ(a, b, ϕ) =
v(acosϕ+ b)− v(a+ b)

a2
, (2.7)

m̃(a, b,Φ, ϕ) =
Φfsinϕ

a
(2.8)

and

f̃(a, b,Φ, θ) =
f d(Φsinθ)

dθ − hsinθ
a

. (2.9)

By taking ϕ = π and 2π respectively in equation (2.5), we obtain

ṽ(a, b, π)− λ
∫ π

0

f̃(a, b,Φ, θ)dθ = 0 (2.10)

and

∫ 2π

0

f̃(a, b,Φ, θ)dθ = 0. (2.11)

Suppose that the system of equation (1.1) has a saddle point (h, 0), if

ah

|h|
+ b− h = 0, (2.12)



118 J. Li, H. Wang, Z. Li, Z. Chu & Z. Chen

then the homoclinic orbit appears.
From (2.5), (2.10), (2.11) and (2.12), a, b and Φ are obtained, and the analytical-

expressions of the homoclinic orbit is obtained. The procedure of the perturbation-
incremental method is divided into two steps.

1. The first step is the perturbation method. Supposing that the parameter λ
is small, i.e. λ ≈ 0, and the solution of equations (2.5), (2.10), (2.11) and (2.12)
can be represented in the forms

a = a0 +O(λ), b = b0 +O(λ), Φ = Φ0 +O(λ). (2.13)

Let λ ≈ 0, from (2.5) we have

Φ0(ϕ) =
[2v(a0 + b0)− 2v(a0cosϕ+ b0)]

1
2

a0|sinϕ|
, (2.14)

From (2.10), we have

v(−a0 + b0)− v(a0 + b0) = 0, (2.15)

From (2.11) and (2.12), we obtain

∫ 2π

0

f̃(a0, b0,Φ0, θ)dθ = 0 (2.16)

and

a0h

|h|
+ b0 − h = 0. (2.17)

The zero-order perturbation solution for the homoclinic orbit of equation (1.1)
can be written as

x = a0cosϕ+ b0,
dx

dt
= −a0Φ0(ϕ)sinϕ. (2.18)

2. The second step of the perturbation-incremental method is the parameter
incremental method. Small increments are added to the current solution a0, b0
and Φ0 (or the perturbation solution at the beginning of the procedure when λ0 =
0) of equations (2.5), (2.10), (2.11) and (2.12), to obtain a neighbouring solution
corresponding to

λ = λ0 + ∆λ, a = a0 + ∆a, b = b0 + ∆b, Φ = Φ0 + ∆Φ. (2.19)

Here, we proceed instead by solving for ∆a, ∆b and ∆Φ incrementally. For
this purpose, we expand (2.5), (2.10), (2.11) and (2.12) in Taylor’s series about the
initial state and linearized incremental equations are derived by ignoring all the
nonlinear terms of the small increments as follows

[(∂ṽ
∂a

)
0
+λ
(∂m̃
∂a

)
0
−λ

∫ ϕ

0

(∂f̃
∂a

)
0
dθ
]
∆a+

[(∂ṽ
∂b

)
0
+λ
(∂m̃
∂b

)
0
−λ

∫ ϕ

0

(∂f̃
∂b

)
0
dθ
]
∆b
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+
[(

Φ0sin
2ϕ
)

+ λ
(∂m̃
∂Φ

)
0

]
∆Φ− λ

∫ ϕ

0

( ∂f̃
∂Φ

)
0
∆Φdθ

= −1

2
(Φ0sinϕ)2 − ṽ(a0, b0, ϕ)− λm̃(a0, b0,Φ0, ϕ) + λ

∫ ϕ

0

f̃(a0, b0,Φ0, θ)dθ,

(2.20)

[(∂ṽ
∂a

)
0,π
−λ
∫ π

0

(∂f̃
∂a

)
0
dθ
]
∆a+

[(∂ṽ
∂b

)
0,π
−λ
∫ π

0

(∂f̃
∂b

)
0
dθ
]
∆b−λ

∫ π

0

( ∂f̃
∂Φ

)
0
∆Φdθ

= −ṽ(a0, b0, π) + λ

∫ π

0

f̃(a0, b0,Φ0, θ)dθ, (2.21)

∆a

∫ 2π

0

(∂f̃
∂a

)
0
dθ + ∆b

∫ 2π

0

(∂f̃
∂b

)
0
dθ +

∫ 2π

0

( ∂f̃
∂Φ

)
0
∆Φdθ = −

∫ 2π

0

f̃(a0, b0,Φ0, θ)dθ,

(2.22)

h

|h|
∆a+ ∆b = h− h

|h|
a0 − b0, (2.23)

where (∂ṽ
∂a

)
0,π

=
∂

∂a
ṽ(a, b, ϕ)|a=a0,b=b0,ϕ=π and similarly for

(∂ṽ
∂b

)
0,π
.

Any 2π periodic functions will have a Fourier expansion and it will be assumed
that M harmonics will provide a sufficiently accurate representation. Therefore, we
write

Φ0 =

M∑
j=0

(Pjcosjϕ+Qjsinjϕ), Q0 = 0. (2.24)

Accordingly, the unknown ∆Φ is expressed as

∆Φ =

M∑
j=0

(∆Pjcosjϕ+ ∆Qjsinjϕ), ∆Q0 = 0. (2.25)

Expanding the periodic functions in equations (2.20)-(2.23) into Fourier series,(∂ṽ
∂a

)
0

=
∑
k≥0

αkcoskϕ (2.26)

and

(∂ṽ
∂b

)
0

=
∑
k≥0

βkcoskϕ, (2.27)
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where the sine contributions will be identically zero by reference to equation (2.7).
Also,

f̃(a0, b0,Φ0, ϕ) =
∑
k≥0

(γ1,kcoskϕ+ δ1,ksinkϕ), (2.28)

m̃(a0, b0,Φ0, ϕ) =
∑
k≥0

(m1,kcoskϕ+ n1,ksinkϕ), (2.29)

(∂f̃
∂a

)
0

=
∑
k≥0

(γ2,kcoskϕ+ δ2,ksinkϕ), (2.30)

(∂f̃
∂b

)
0

=
∑
k≥0

(γ3,kcoskϕ+ δ3,ksinkϕ), (2.31)

( ∂f̃
∂Φ

)
0

=
∑
k≥0

(γ4,kcoskϕ+ δ4,ksinkϕ), (2.32)

(∂m̃
∂a

)
0

=
∑
k≥0

(m2,kcoskϕ+ n2,ksinkϕ), (2.33)

(∂m̃
∂b

)
0

=
∑
k≥0

(m3,kcoskϕ+ n3,ksinkϕ), (2.34)

(∂m̃
∂Φ

)
0

=
∑
k≥0

(m4,kcoskϕ+ n4,ksinkϕ), (2.35)

Φ0sin
2ϕ =

∑
k≥0

(ζ1,kcoskϕ+ η1,ksinkϕ), (2.36)

1

2
(Φ0sinϕ)2 + ṽ(a0, b0, ϕ) =

∑
k≥0

(ζ2,kcoskϕ+ η2,ksinkϕ), (2.37)

where δi,0, ηj,0 may be set to zero for all i, j. Substituting these expansions into
equations (2.20)-(2.23) and employing the harmonic balance method, a system of
linear equations with unknowns ∆a, ∆b, ∆Pj , ∆Qj in the form is as follows

An∆a+Bn∆b+An,0∆P0 +

M∑
j=1

(An,j∆Pj +Bn,j∆Qj) = Rn, (2.38)



Homoclinic Orbits of an Isochronous System by the Perturbation-Incremental Method 121

where n = 0, 1, 2, ..., 2M + 3. The coefficients An, Bn, An,j , Bn,j and Rn are
given in the Appendix. It should be noted that Ri, RM+i are coefficients of the
cosine and sine terms (for all i) in the Fourier expansion of the function on the
right-hand side of (2.20), whereas R2M+1 and R2M+3 are the right-hand side values
of equations (2.21-2.23). Thus, Rn in equation (2.38) is a residue term to prevent
the drifting of the incremental process away from the actual solution. Equation
(2.38) is solved by an equation solver such as the Gaussian elimination procedure.
The values a0, b0 and Φ0 can be updated by adding the original values to the
corresponding incremental values. The iteration process continues until Rn → 0 for
all n (in fact, |Rn| is less than the expected accuracy). The incremental process
proceeds by adding the ∆λ incrementally to converged value of λ, using the previous
solution as the zero-order perturbation solution until a new converged solution is
obtained.

The a, b and Φ(ϕ) are found, the phase portrait of the homoclinic orbit is
generated from

x = acosϕ+ b,
dx

dt
= −aΦ(ϕ)sinϕ, (2.39)

where ϕ varies from 0 to 2π.
In the next section, we will study a quadratic isochronous system using the

perturbation-incremental method.

3. A quadratic isochronous system

In this section, we will discuss a quadratic isochronous system [26]
dx

dt
= −y + x2 − y2,

dy

dt
= x+ 2xy.

(3.1)

First, transform it into a suitable form by x → y, y → x, and introduce the
parameter λ ∈ (0, 1], then we can change equation (3.1) to


dx

dt
= y + 2λxy,

dy

dt
= −(x+ x2) + λy2.

(3.2)

Letting f(x, y) = 2xy, h(x, y) = y2, g(x) = x+ x2, hence v(x) =
1

2
x2 +

1

3
x3.

From equations (2.7), (2.8) and (2.9), we obtain

ṽ(a, b, ϕ) = −
( b
a

+
b2

a
+
a

3

)
+
( b
a

+
b2

a

)
cosϕ−

(1

2
+ b
)
sin2ϕ+

1

3
acos3ϕ, (3.3)

m̃(a, b,Φ, ϕ) = −2Φ2sin2ϕ(acosϕ+ b) (3.4)
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and

f̃(a, b,Φ, θ) = −2Φ2sinθcosθ(acosθ + b) +
2

3
asin3θ(acosθ + b)− aΦ2sin3θ. (3.5)

Equations (2.14) and (2.15) will give

b0 =
1

2

(
− 1 +

√
1− 4

3
a2

0

)
(3.6)

and

Φ0(ϕ) =
(

1 + 2b0 +
2

3
a0cosϕ

) 1
2

. (3.7)

The fixed point (−1, 0) in the phase plane is a saddle point, hence equation
(2.17) becomes

−a0 + b0 + 1 = 0. (3.8)

(1) The zero-order perturbation solution
When λ ≈ 0, the two-dimensional streamline diagram of the system is given

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

dx
dt

Homoclinic Orbits

Figure 1. The two-dimensional streamline diagram for λ = 0.

From equations (2.16), (3.6), (3.7) and (3.8), we obtain

a0 =
3

4
, b0 = −1

4
, Φ0 =

√
1

2
+

1

2
cosϕ. (3.9)

Hence, for λ ≈ 0, the zero-order perturbation solution of the equation (3.2)

x =
3

4
cosϕ− 1

4
,
dx

dt
= −3

4

√
1

2
+

1

2
cosϕ sinϕ. (3.10)
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the zero-order perturbation solution

Figure 2. Homoclinic orbits phase for λ = 0.

(2) The parameter incremental method
Letting λ0 = 0, ∆λ = 0.002, and M = 4. Table 1 shows the results of 25

successive increments of ∆λ staring from the zero-order perturbation solution, and
the phase diagrams of homoclinic orbits are given as shown in Figure 3 and Figure
4 when λ = 0.040 and λ = 0.050.
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Figure 3. Homoclinic orbits phase for λ = 0.04.
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Table 1. Values of a, b at the homoclinic orbits for various λ of equation (3.2)

λ a b λ a b

0.002 0.7489482203 -0.25105177970 0.028 0.8560995146 -0.14390048520

0.004 0.7534021728 -0.24659782720 0.030 0.8243394614 -0.17566053840

0.006 0.8895746752 -0.11042532480 0.032 0.8043431373 -0.19565686250

0.008 1.1313867140 0.131386714200 0.034 0.7897776816 -0.21022231820

0.010 1.3063483960 0.306348396200 0.036 0.7829275613 -0.21707243850

0.012 1.3616782120 0.361678211700 0.038 0.7763406032 -0.22365939660

0.014 1.3429087140 0.342908713400 0.040 0.7768658016 -0.22313419820

0.016 1.2873910520 0.287391051600 0.042 0.7739786557 -0.22602134410

0.018 1.1184562601 0.208491196900 0.044 0.7756616431 -0.22433835670

0.020 1.1184562600 0.118456260100 0.046 0.7772558541 -0.22274414570

0.022 1.0318717410 0.031871741160 0.048 0.7757369549 -0.22426304490

0.024 0.9580452789 -0.04195472097 0.050 0.7764955465 -0.22350445330

0.026 0.8985727515 -0.10142724830
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the perturbation-incremental method

Figure 4. Homoclinic orbits phase for λ = 0.05.

where λ = 0.040,

Φ =
√

0.5537316036 + 0.5179105344 cosϕ, P0 =
2

π
+ 0.1588290610,

P1 =
4

3π
− 0.1646340531, P2 = − 4

15π
+ 0.1848655365,
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P3 =
4

35π
− 0.09899845246, P4 = − 4

63π
+ 0.07909531348,

Q1 = Q2 = Q3 = Q4 = 0

and λ = 0.050,

Φ =
√

0.5529910934 + 0.5176636977 cosϕ, P0 =
2

π
+ 0.1101298576,

P1 =
4

3π
− 0.09019901266, P2 = − 4

15π
+ 0.1293934705,

P3 =
4

35π
− 0.0692587667, P4 = − 4

63π
+ 0.05467317834,

Q1 = Q2 = Q3 = Q4 = 0.

4. Conclusion

The perturbation-incremental method is an effective method to find the analytical-
expressions of homoclinic orbits of quadratic isochronous systems. Homoclinic or-
bits obtained by using the perturbation-incremental method are compared with
those from the numerical method and they are in good agreement. The advantages
of the method are that

(1) The zero-order perturbation solution of the homoclinic orbit is determined
by perturbation method as shown in Figure 2.

(2) Satisfactory results for arbitrary parameters can be obtained by the param-
eter incremental method, as shown in Figure 3 and Figure 4.

(3) Within the range of accuracy required, the result of λ = 0.050 is more accu-
rate than λ = 0.040.

It will be my further research to apply the perturbation-incremental method to
the cubic isochronous systems, and to consider the two parameters with parameters
bifurcation problems.
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Appendix

Coefficients of terms in equation (2.38)

A0 = α0 + λm2,0 − λ
M∑
k=1

1

k
δ2,k,

Ai = αi + λm2,i + λ
1

i
δ2,i,

Am+i = λn2,i − λ
1

i
r2,i,

A2m+1 =

M∑
k=1

(−1)kαk − λ
M∑
k=1

1

k
[1− (−1)k]δ2,k,

A2m+2 = r2,0,

A2m+3 = sign(h),

B0 = β0 + λm3,0 − λ
M∑
k=1

1

k
δ3,k,

Bi = βi + λm3,i + λ
1

i
δ3,i,

Bm+i = λn3,i − λ
1

i
r3,i,

B2m+1 =

M∑
k=1

(−1)kβk − λ
M∑
k=1

1

k
[1− (−1)k]δ3,k,

B2m+2 = r3,0,

B2m+3 = 1,

A0,j =
1

2
(ζ1,−j + ζ1,j) +

1

2
λ(m4,−j +m4,j)

−1

2
λ

M∑
k=1

1

k
(δ4,k−j − δ4,j−k + δ4,j+k),
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Ai,j =
1

2
(ζ1,i−j + ζ1,j−i + ζ1,j+i) +

1

2
λ(m4,i−j +m4,j−i +m4,j+i)

+
1

2i
λ(δ4,i−j − δ4,j−i + δ4,j+i),

Am+i,j =
1

2
(η1,i−j − η1,j−i + η1,j+i) +

1

2
λ(n4,i−j − n4,j−i + n4,j+i)

− 1

2i
λ(r4,i−j + r4,j−i + r4,j+i),

A2m+1,j = −1

2
λ

M∑
k=1

[1− (−1)k]

k
(δ4,k−j − δ4,j−k + δ4,j+k),

A2m+2,j =
1

2
(r4,−j + r4,j),

A2m+3,j = 0,

B0,j =
1

2
(η1,−j + η1,j) +

1

2
λ(n4,−j + n4,j)

−1

2
λ

M∑
k=1

1

k
(r4,k−j + r4,j−k − r4,j+k),

Bi,j =
1

2
(η1,j−i + η1,j+i − η1,i−j) +

1

2
λ(n4,j−i + n4,j+i + n4,i−j)

+
1

2i
λ(r4,i−j + r4,j−i − r4,j+i),

Bm+i,j =
1

2
(ζ1,i−j + ζ1,j−i − ζ1,j+i) +

1

2
λ(m4,i−j +m4,j−i −m4,j+i)

− 1

2i
λ(δ4,j−i + δ4,j+i − δ4,i−j),

B2m+1,j = −1

2
λ

M∑
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[1− (−1)k]

k
(r4,k−j + r4,j−k − r4,j+k),

B2m+2,j =
1

2
(δ4,j − δ4,−j),

B2m+3,j = 0,

R0 = −ζ2,0 − λm1,0 + λ

M∑
k=1

1

k
δ1,k,

Ri = −ζ2,i − λm1,i − λ
1

i
δ1,i,



130 J. Li, H. Wang, Z. Li, Z. Chu & Z. Chen

Rm+i = −η2,i − λn1,i + λ
1

i
r1,i,

R2m+1 = −
M∑
k=1

(−1)kζ2,k + λ

M∑
k=1

[1− (−1)k]

k
δ1,k,

R2m+2 = −r1,0,

R2m+3 = h− sign(h)a0 − b0,

where
i = 1, 2, ...,M, j = 0, 1, 2, ...,M,

ζ1,k = η1,k = r4,k = δ4,k = 0, for k < 0.
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