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Hopf Bifurcation Analysis of a Class of Abstract
Delay Differential Equation∗
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Abstract The dynamics of a class of abstract delay differential equations
are investigated. We prove that a sequence of Hopf bifurcations occur at the
origin equilibrium as the delay increases. By using the theory of normal form
and centre manifold, the direction of Hopf bifurcations and the stability of the
bifurcating periodic solutions is derived. Then, the existence of the global Hopf
bifurcation of the system is discussed by applying the global Hopf bifurcation
theorem of general functional differential equation.
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1. Introduction

Since the last century, people have successively proposed a large number of delay
differential equations problems in many fields of natural and social sciences such
as galaxy evolution [9], optics [3, 20], nuclear physics [1, 31], chemical circulation
systems, neural networks [33], population dynamics [28], ecosystems [24], infectious
diseases [2, 17,30], etc. For example, population growth model

N ′(t) = K

(
1− N(t− τ)

p

)
N(t) (1.1)

is a nonlinear delay differential equation. Neutral delay differential equation pro-
posed in the study of energy loss in power networks

ẋ(t) = Aẋ(t− τ) +Bx(t)− Cx(t− τ) (1.2)

is also a very typical example. The proposition of these problems has aroused
increasing attention on the study of differential equations with delay. Similar argu-
ments can be found in [6, 10,11].

Before the 1930s, the research content of functional differential equations was
limited to the special properties of some special types of equations. Volterra [25,26]
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used the relationship between the functional differential range and some physical
systems to define the energy function to observe the asymptotic behavior of system
in a short time. This was a milestone in the development of the theoretical system
of functional differential equations. With the in-depth study of these problems,
the theory of functional differential equations has been continuously improved, and
many monographs on the theory of functional differential equations have appeared.
Bellman and Danskin [3], Bellman and Cooke [18] put forward the stability theo-
rem of the linear difference differential equation of constant system, Krasovskii [12]
also gave. Hale [7] explained the theory of functional differential equations more
comprehensively from the aspects of stability, boundedness, periodic solutions, vi-
bration and asymptotic properties, and almost periodic solutions. Further, Hale
and Lunel published the Introduction to Functional Differential Equations in 1993,
which made a good summary of the research on finite delay functional differential
equations.

Delay differential equation is an important branch of differential equation. It
is a kind of differential equation whose derivative function of time depends on the
value of the solution at the past time point [22]. It is used to describe the motion
phenomenon related to the state of motion and historical time. Specifically, the
differential equation describing the development process of a specific system stated
over time of the objective world is called a differential dynamic system. If the
development of the system state depends not only on the current state, but also on
the state of the system at certain moments or time segments in the past, this type
of dynamic system is called a time-delay differential dynamic system [5].

Generally speaking, delay differential systems have more complex dynamic prop-
erties than corresponding ordinary differential systems. This is because the time
lag can change the stability of the equilibrium point of the system and lead to the
occurrence of Hopf branching and chaos. Therefore, it is a very meaningful subject
to study the influence of time delay on the dynamics of the system. In fact, there
is a wide literature on the dynamic systems with time delay, we refer the readers
to [8, 16,19,21,23,32] respectively and references therein.

A two-agent opinion dynamical system with processing delay ẋ1(t) = 1
2αa12 (x2(t− τ)− x1(t− τ))

ẋ2(t) = 1
2αa21 (x1(t− τ)− x2(t− τ))

(1.3)

is discussed in [29]. The author transforms the dynamic problem into a kind of
delay differential equation

ẋ(t) = αp(x(t− τ)), (1.4)

and analyze the asymptotic stability of its origin. Wei [15] studied the dynamic
properties of a scalar delay differential equation

ẋ(t) = −γx(t) + βf(x(t− τ)). (1.5)

Equation (1.5) proved that the Hopf bifurcation sequence occurs with the increase
of time delay at the equilibrium point. Furthermore, the results of the existence of
the global Hopf bifurcation are studied, and the global existence of multiple periodic
solutions is established.
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Inspired by the above, this paper combines the system equations in [29] and [15],
and considers the following abstract differential equations with time delay: ẋ1(t) = αf1 (x2(t− τ)) ,

ẋ2(t) = −γx2(t) + βf2 (x1(t− τ)) ,
(1.6)

where τ is a parameter.
This paper is divided into four sections: In Section 2, we investigate the equi-

librium and the occurrence of Hopf bifurcations. In Section 3, we derive sufficient
conditions for the stability and the direction of bifurcating periodic solutions. A
global Hopf bifurcation is established in Section 4.

2. Local existence of periodic solutions

In this section, we study the stability of the equilibrium and the existence of local
Hopf bifurcations. Firstly, we make the following assumptions on (1.6).

(H1) fi ∈ C3, i = 1, 2. fi(0) = 0, and fi(x) 6= 0 for x ∈ N and x 6= 0.
(H2) α, β, γ > 0 and τ ≥ 0.
Under the assumption (H1), origin is a fixed point to equation (1.6). Linearizing

the equation around origin gives ẋ1(t) = αf ′1(0)x2(t− τ),

ẋ2(t) = −γx2(t) + βf ′2(0)x1(t− τ).
(2.1)

In other words,  ẋ1(t) = a1x2(t− τ),

ẋ2(t) = −γx2(t) + a2x1(t− τ),
(2.2)

where a1 = αf ′1(0), a2 = βf ′2(0).
The characteristic equation associated with (2.2) is λ −a1e−λτ

−a2e−λτ λ+ γ

 = 0. (2.3)

That is,
λ(λ+ γ)− a1a2e−2λτ = 0. (2.4)

For τ = 0, we have
λ(λ+ γ)− a1a2 = 0. (2.5)

Equation (2.5) has two roots

λ1,2 =
1

2

[
−γ ±

(
γ2 + 4a1a2

) 1
2

]
.

Thus, equation (2.5) has strictly negative real part, if and only if

a1a2 < −
γ2

4
.
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Lemma 2.1. Assume that

(H3) a1a2 < −
γ2

4

hold, all the roots of equation (2.5) has negative real part, which is the system (1.6)
is asymptotically stable.

For τ > 0, iω(ω > 0) is a root, if and only if

iω(iω + γ)− a1a2e−2λτ = iω(iω + γ)− a1a2(cos 2ωτ − i sin 2ωτ) = 0.

Separating the real and imaginary parts, we get

−ω2 = a1a2 cos 2ωτ, ωγ = −a1a2 sin 2ωτ, (2.6)

which leads to
ω4 + ω2γ2 = a21a

2
2. (2.7)

Let u = ω2, then equation (2.7) becomes

u2 + uγ2 − a21a22 = 0.

Obviously, this equation has two real roots

u1,2 =
−γ2 ±

√
γ4 + 4a21a

2
2

2
.

Meanwhile, u1 > 0, u2 < 0. Therefore, (2.7) has a real root

ω0 =

√
−γ2 +

√
γ4 + 4a21a

2
2

2
.

Furthermore, ∣∣∣∣−ω2

a1a2

∣∣∣∣ < 1.

Let

τk =
1

2ω0

(
arccos

−ω2
0

a1a2
+ 2kπ

)
, (2.8)

where k = 0, 1, 2, · · · . Denote F (λ, τ) = λ2 + γλ− a1a2e−2λτ . If equation (2.4) has
not a pair of simple imaginary roots ±iω, we have

∂F

∂λ

∣∣∣∣
τ=rk

=
(
2λ+ γ + 2τa1a2e

−2λτ)∣∣
τ=τk

= 0.

Combining with (2.4), 2iω0 + γ + 2τka1a2e
−2iω0τk = 0,

−ω2
0 + iω0γ − a1a2e−2iω0τk = 0.

Hence,
(2 + γ)ω0 = 0.

This is contradictory. Therefore, equation (2.4) has a pair of simple imaginary roots
±iω when τ = τk. Let λk(τ) = αk(τ) + iωk(τ) denote a root of (2.4) near τ = τk,
satisfying αk (τk) = 0 and ωk (τk) = ω0. Then, we have some results as follows.
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Lemma 2.2.
dReλ(τ)

dτ

∣∣∣∣
τ=τk

> 0.

Proof. Differentiating both sides of (2.4) with respect to τ , we obtain

2λ
dλ

dτ
+ γ

dλ

dτ
− a1a2e−2λτ

(
−2λ− 2τ

dλ

dτ

)
= 0.

Therefore,
dλ

dτ
=

−2a1a2λ

(2λ+ γ)e2λτ + 2a1a2τ
,

and hence

dλ

dτ

∣∣∣∣
τ=τk

=
−2a1a2iω0

(2iω0 + γ) e2iω0τk + 2a1a2τk

=
−2a1a2iω0

(2iω0 + γ) (cos 2ω0τk + i sin 2ω0τk) + 2a1a2τk

=
−2a1a2iω0

(2iω0 + γ)
(
−ω2

0

a1a2
− ω0γ

a1a2
i
)

+ 2a1a2τk

=
2a21a

2
2iω0

(2iω0 + γ) (ω2
0 + ω0γi)− 2a21a

2
2τk

=
1

M

{
2a21a

2
2ω

2
0

(
γω2

0 + 2a21a
2
2τk
)
− 2ia21a

2
2ω0

(
2ω3

0 + ω0γ
2
)}
,

(2.9)

where
M =

(
ω2
0γ + 2a21a

2
2τk
)2

+
(
ω0γ

2 + 2ω3
0

)2
.

Hence,
dReλ(τ)

dτ

∣∣∣∣
τ=τk

=
1

M

{
2a21a

2
2ω

2
0

(
γ2ω0 + 2ω3

0

)}
> 0,

which implies our claim.

Lemma 2.3. For the system (1.6), assume that (H1)− (H3) hold, we have
(i) equation (2.4) has a pair of simple imaginary roots ±iω when τ = τk, where

k = 0, 1, 2, ....
(ii) for τ ∈ [0, τ0), all roots of equation (2.4) have negative real parts, for τ = τ0,

all roots still have negative real parts except ±iω0.
(iii) for τ ∈ (τk, τk+1], equation (2.4) has 2(k+ 1) roots with positive real parts.

Proof. Equation (2.4) has simple imaginary roots ±iω0, if and only if τ = τk,
the conclusion on the number of eigenvalues with positive real parts can be arrived
at according to Lemma 2.2, Dieudonné [7], Ruan and Wei [22]. The details are
omitted.

Summarizing the above discussion directly draws the conclusion on the stability
of origin as follows.

Theorem 2.1. For system (1.6), assume that (H1)− (H3) hold, we get
(i) x = 0 is asymptotically stable for τ ∈ [0, τ0).
(ii) x = 0 is unstable for τ > τ0.
(iii) the system undergoes a Hopf bifurcation at the origin when τ = τk, for

k = 0, 1, 2, ....
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3. Stability and direction of the Hopf bifurcation

In the previous section, we obtained conditions for the Hopf bifurcation to occur
when τ = τk, k = 0, 1, 2, ... This subsection will investigate the direction of the Hopf
bifurcation and the stability of the bifurcating solution when τ passes τ0, employing
the center manifold theory and techniques from Hassard et al. [15] and Wei [29].

Let y(t) = x(τt). Then, (1.6) becomes ẏ1(t) = ατf1 (y2(t− 1)) ,

ẏ2(t) = −γτy2(t) + βτf2 (y1(t− 1)) .
(3.1)

Linearizing the equation around origin gives ẏ1(t) = ατf ′1(0)y2(t− 1),

ẏ2(t) = −γτy2(t) + βτf ′2(0)y1(t− 1).
(3.2)

We have  ẏ1(t) = a1τy2(t− 1),

ẏ2(t) = −γτy2(t) + a2τy1(t− 1),
(3.3)

where a1 = αf ′1(0), a2 = βf ′2(0). Correspondingly, the characteristic (2.4) becomes

z(z + γτ)− a1a2τ2e−2z = 0 (3.4)

with z = λτ for τ 6= 0. From the conclusion of Lemma 2.3 we know that, all roots
of equation (3.3) except ±iτ0ω0 have negative real parts. Furthermore, by Lemma
2.2, the root of (3.3)

z(τ) = τα(τ) + iτω(τ),

with α(τ0) = 0 and ω(τ0) = ω0 satisfies

dRe τλ(τ)

dτ

∣∣∣∣
τ=τk

> 0.

Set τ = τ0 + µ, µ ∈ R. Then, µ = 0 is a Hopf bifurcation value for (2.3). Rewrite
(2.3) as

ẏ(t) = (τ0 + µ) [By(t) + Cy(t− 1)], (3.5)

where y(t) = (y1(t), y2(t))
T

, B =

0 0

0 −γ

, C =

 0 a1

a2 0

 .
For φ = (φ1, φ2)

T ∈ C
(
[−1, 0],R2

)
, let

Lµ(φ) = (τ0 + µ) [Bφ(0) + Cφ(−1)] (3.6)

and

F (µ, φ) = (τ0 + µ)
[
c11φ

2(−1) + d11φ
3(−1)

]
+ · · · , (3.7)
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where c11 = 1
2

 0 αf ′′1 (0)

βf ′′2 (0) 0

, d11 = 1
3!

 0 αf ′′′1 (0)

βf ′′′2 (0) 0

.

By the Riesz representation theorem, there exists a function η(θ, µ) of the bounded
variation for θ ∈ [−1, 0] such that

Lµ(φ) =

∫ 0

−1
dη (θ, µ)φ(θ), ∀φ ∈ C

(
[−1, 0],R2

)
. (3.8)

In fact, we can take

η (θ, µ) = (τ0 + µ)Bδ(θ) + (τ0 + µ)Cδ(θ + 1), (3.9)

where δ(x) denotes the Dirac Function

δ(x) =

1, x = 0,

0, x 6= 0.

For φ ∈ C
(
[−1, 0],R2

)
, we define

A(µ)φ =


dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1 dη(ξ, µ)φ(θ), θ = 0,

and

N(µ)φ =

 0, θ ∈ [−1, 0),

F (µ, φ), θ = 0.

Then, (3.5) can be rewritten as

ẏt = A(µ)yt +N(µ)yt, (3.10)

where yt(θ) = y(t+ θ) for θ ∈ [−1, 0]. For ψ ∈ C
(
[0, 1],R2

)
, define

A∗ψ =


dψ(s)
ds , s ∈ (0, 1],∫ 0

−1 dη(t, 0)ψ(−t), s = 0.

For φ ∈ C
(
[−1, 0],R2

)
and ψ ∈ C

(
[0, 1],R2

)
, define a bilinear form

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

s−0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.11)

where η(θ) = η(θ, 0). We know that A∗ and A = A(0) are adjoint operators, so
±iτ0ω0 are also eigenvalues of A∗. It is obtained that q(θ) = (1, ε)T eiτ0ω0θ is an
eigenvector of A corresponding to the eigenvalue iτ0ω0 and q∗(s) = D(1, ε∗)eiτ0ω0s

is an eigenvector of A∗ with respect to −iτ0ω0. Furthermore,

〈q∗, q〉 = 1, 〈q∗, q〉 = 0,

where

ε =
iω0

αf ′1(0)
eiω0τ0 , ε∗ =

1

βf ′2(0)
eiω0τ0
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and
D = 1 + εε̄∗ + ατ0f

′
1(0)εe−iω0τ0 + βτ0f

′
2(0)ε̄∗e−iω0τ0 .

With the help of these preliminaries, we immediately give some useful data in what
follows, which can lead to significant properties of the Hopf bifurcation. Following
the algorithms given by Hassardal [15] and using a computation process similar to
that given by Wei and Li [?], we first compute the center manifold C0 at µ = 0.
Let yt be the solution of (3.5) when µ = 0. Define

z(t) = 〈q∗, yt〉 , W (t, θ) = yt(θ)− 2 Re{z(t)q(θ)}.

On the center manifold C0 we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z(t), z̄(t), θ) = W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · ,

z and z̄ are local coordinates for the center manifold C0 in the direction of q∗ and
q̄∗. Note that W is real if yt is real. We consider only real solutions. For a solution
yt ∈ C0 of (3.5), since µ = 0, we have

ż(t) =iω0τ0z + q∗(θ)f(W + 2 Re{z(t)q(θ)})
=iω0τ0z + q̄∗(0)f(W (z, z̄, 0) + 2 Re{z(t)q(0)})
=iω0τ0z + q̄∗(0)f0(z, z̄).

We rewrite the equation as

ż(t) = iω0τ0z + g(z, z̄) (3.12)

with

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (3.13)

By (3.10) and (3.12), we have

W ′ =

AW − 2 Re {q̄∗(0)fq(θ)} , −1 ≤ θ < 0

AW − 2 Re {q̄∗(0)fq(θ)}+ f, θ = 0

=AW +H(z, z̄, θ),

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11zz̄ +H02(θ)

z̄2

2
+ · · · . (3.14)

Expanding the above series and comparing the corresponding coefficients, we obtain

(A− 2iω0τ0)W20(θ) = −H20(θ), (3.15)

AW11(θ) = −H11(θ). (3.16)

Note that
yt = W (t, θ) + zq(θ) + z̄q̄(θ), q(θ) = (1, ε)T eiτ0ω0θ.
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We get

y(t− 1) =ze−iω0τ0 + z̄eiω0τ0

+W20(−1)
z2

2
+W11(−1)zz̄ +W02(−1)

z̄2

2
+ · · · .

This relation and (3.13) imply

g(z, z̄) =q̄∗(0)f0(z, z̄)

=τ0D̄ [f1 (0, yt) + ε̄∗f2 (0, yt)]

=τ0

[
D̄ (τ0 + µ)αf ′′1 (0)

[
ε2e−2iω0τ0

z2

2
+ εε̄zz̄ + ε̄2e2iω0τ0

z̄2

2

+
(

2εe−iω0τ0W
(2)
11 (−1) + ε̄eiω0τ0W

(2)
20 (−1)

) z2z̄
2

]
+ (τ0 + µ)αf ′′1 (0)ε2ε̄e−iω0τ0

z2z̄

2

+ (τ0 + µ)βf ′′2 (0)

[
e−2iω0τ0

z2

2
+ zz̄ + e2iω0τ0

z̄2

2

+
(

2e−iω0τ0W
(1)
11 (−1) + eiω0τ0W

(1)
20 (−1)

) z2z̄
2

]
+ (τ0 + µ)βf ′′′2 (0)e−iω0τ0

z2z̄

2

]
.

Comparing coefficients with (3.13) and using q̄∗(0) = D̄, we have

g20 = D̄τ0
[
(τ0 + µ)

(
αf ′′1 (0)ε2 + βf ′′2 (0)ε̄∗

)]
e−2iτ0ω0 ,

g11 = D̄τ0 [(τ0 + µ) (αf ′′1 (0)εε̄+ βf ′′2 (0)ε̄∗)] ,

g02 = D̄τ0
[
(τ0 + µ)

(
αf ′′1 (0)ε̄2 + βf ′′2 (0)ε̄∗

)]
e2iτ0ω0 ,

g21 = D̄τ0

[
(τ0 + µ)

[
2αf ′′1 (0)εW

(2)
11 (−1) + αf ′′1 (0)ε2ε̄

+2βf ′′2 (0)W
(1)
11 (−1) + βf ′′′2 (0)ε̄∗

]
e−iτ0ω0

+ (τ0 + µ)
[
αf ′′1 (0)ε̄W

(2)
20 (−1) + βf ′′2 (0)W

(1)
20 (−1)

]
eiτ0ω0

]
.

(3.17)

Since for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q̄∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

Comparing coefficients with (3.14), we get

H11(θ) = −g11q(θ)− ḡ11q̄(θ), H20(θ) = −g20q(θ)− ḡ02q̄(θ).

Substituting these relations into (3.15), we can derive the following equation

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + g02q̄(θ).

Solving for W20(0), we obtain

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
iḡ02

3ω0τ0
q̄(0)e−iω0τ0θ + E1e

2iω0τ0θ. (3.18)
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Similarly,

W11(θ) = − ig11
ω0τ0

q(0)eiω0τ0θ +
iḡ11
ω0τ0

q̄(0)e−iω0τ0θ + E2, (3.19)

where

E1 =
(
αf ′′1 (0) + βf ′′2 (0)ε̄∗ε2

)
e−2iτ0ω0

[
2iω0 + γ − (αf ′1(0) + βf ′2(0)) e−2iτ0ω0

]−1
,

E2 = (αf ′′1 (0) + βf ′′2 (0)εε̄) [γ − (αf ′1(0) + βf ′2(0))]
−1
.

Definitely, each gij can be definitely computed out according to equation (1.6) with
all required parameters clear. Finally, we can compute the following quantities:

c1(0) =
i

2τ0ω0

(
g11g20 − 2 |g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = − Re (c1(0))

Re (λ′ (τ0))
, β2 = 2 Re (c1(0)) , T2 = − Im (c1(0)) + µ2 Im (λ′ (τ0))

ω0τ0
.

It is well-known that µ2 determines the direction of the Hopf bifurcation: if
µ2 > 0(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for τ > τ0(τ < τ0); β2 determines the stability
of bifurcating periodic solutions: the bifurcating periodic solutions are orbitally
asymptotically stable (unstable) if β2 < 0(β2 > 0), and T2 determines the period of
the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(T2 < 0).
From the discussion in Section 2, we know that Re (λ′ (τ0)). Therefore, we have the
following result.

Theorem 3.1. The direction of the Hopf bifurcation of the system (1.6) at the ori-
gin, when τ = τ0 is supercritical (subcritical) and the bifurcating periodic solutions,
are orbitally asymptotically stable (unstable) if Re (c1(0)) < 0(> 0).

4. Global existence of periodic solutions

In this section, we study the global continuation of periodic solutions bifurcating
from the point (0, τk), k = 0, 1, 2, · · · for equation (1.6) by using a global Hopf
bifurcation theorem given by Wu [?]. Firstly, set

ẋ(t) = F (zt, τ, p), (4.1)

where z = (x1, x2)T , zt(θ) = z(t+ θ) ∈ C
(
[−τ, 0],R2

)
. For the sake of convenience,

we introduce some notation:

X = C ([−τ, 0],R) ,

Σ = C`{(z, τ, p) : x is a poriodic solution of (1.3)} ⊂ X × R× R+,

N = {(ẑ, τ, p)|F (ẑ, τ, p) = 0}.
Let C(0, τk,

2π
ω0

) denote the connect component of (0, τk,
2π
ω0

) in Σ, where τk and ω0

are defined in (2.8).
(H4) There exists L > 0 such that

|fi(x)| ≤ L,∀x ∈ R,

where i = 1, 2.
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Lemma 4.1. Suppose that (H4) is satisfied. Then, there exists constant k0 such
that when τ > τk0 , all periodic solutions to (1.6) are uniformly bounded.

Proof. From the discussion in the second section, we can obtain

2π

ω0
< τ1, (4.2)

when k > 1. Moreover, by Lemma 2.2, we deduce that (0, τk,
2π
ω0

) are isolated
centres. Again by Lemma 2.2, we have

γ

(
0, τk,

2π

ω0

)
= degB

(
H−

(
0, τk,

2π

ω0

)
,Ωε 2π

ω0

)
− degB

(
H+

(
0, τk,

2π

ω0

)
,Ω 2π

ω0

)
=− 1.

(4.3)

By [?, Theorem 3.1, 3.2], we conclude that the connected component C(0, τk,
2π
ω0

)

through (0, τk,
2π
ω0

) is unbounded. Let r(t) =
√
x21(t) + x22(t), take the derivative

with respect to both ends of r(t) along the solution to the system (3.1),

ṙ(t) =
1

r(t)
[x1(t)ẋ1(t) + x2(t)ẋ2(t)]

=
1

r(t)

[
x1(t)αf1 (x2(t− τ))− γx22(t) + x2(t)βf2 (x1(t− τ))

]
≤ 1

r(t)

[
−γx22(t) + L (α |x1(t)|+ β |x2(t)|)

] (4.4)

and
N ≥ max{1, (α+ β)γL}.

If exists t0 > 0, such that r(t0) = A ≥ N. Then, we have

ṙ (t0) ≤ 1

A

[
−γA2 + L(α+ β)A

]
= −γA+ (α+ β)L < 0.

Therefore, when x(t) = (x1(t), x2(t))T is periodic solutions of (1.6), we have that
r(t) < N . Summarizing the above discussion, the conclusion follows.

Lemma 4.2. Assume that (H1)− (H4) are satisfied. Then, problem (1.6) has no
periodic solutions of period τ .

Proof. Let (x1(t), x2(t)) is a τ − periodic solution of (1.6), then x1(t) = x1(t− τ)
and x2(t) = x2(t − τ) are periodic solutions of the system of ordinary differential
equations  ẋ1(t) = αf1 (x2(t))) = P (x1, x2),

ẋ2(t) = −γx2(t) + βf2 (x1(t))) = Q(x1, x2).
(4.5)

Let (P (x1, x2), Q(x1, x2)) denote the vector field of (4.4), then

∂P (x1, x2)

∂x1
+
∂Q (x1, x2)

∂x2
= −γ < 0,
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for all (x1, x2) ∈ R. Thus, the classical Bendixson’s negative criterion implies
that (4.5) has no nonconstant periodic solutions. This completes the proof. From
the discussion above, (1.6) has no periodic solutions of period π

n (n ∈ N+). By

(4.2), τ
k < 2π

ω0
< τ1. Further, by (0, τ, p) ∈ C

(
0, τ, 2πω0

)
, when τk → τ1, p → 2π

ω0
.

C
(

0, τ, 2πω0

)
is connected. Therefore, p − periodic solutions to (1.6) are uniformly

bounded.

Theorem 4.1. Assume that (H1)− (H4) are satisfied, for each τ > τk, k =
2, 3, · · · , equation (1.6) has at least k − 2 periodic solutions, where τk is defined
in (2.8).

Proof. Lemma2.2 implies that C
(

0, τ, 2πω0

)
is nonempty and unbounded, and by

Lemma 4.1 and Lemma 4.2, the projection of C
(

0, τ, 2πω0

)
onto τ−space is bounded

below. Consequently, the projection of C
(

0, τ, 2πω0

)
onto the τ − space includes

[τk,∞). This shows that for each τ > τk(k > 1), equation (1.3) (or (4.1)) has k− 2
periodic solutions. This completes the proof.
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