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Abstract: A proper k-total coloring f of the graph G(V, E) is said to be a k-vertex strong
total coloring if and only if for every v ∈ V (G), the elements in N [v] are colored with different
colors, where N [v] = {u|uv ∈ V (G)} ∪ {v}. The value χvs

T (G) = min{k| there is a k-vertex
strong total coloring of G} is called the vertex strong total chromatic number of G. For a
3-connected plane graph G(V, E), if the graph obtained from G(V, E) by deleting all the edges
on the boundary of a face f0 is a tree, then G(V, E) is called a Halin-graph. In this paper,
χvs

T (G) of the Halin-graph G(V, E) with ∆(G) ≥ 6 and some special graphs are obtained.
Furthermore, a conjecture is initialized as follows: Let G(V, E) be a graph with the order of
each component are at least 6, then χvs

T (G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree
of G.
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1. Introduction

The coloring problem is one of the most important problems in the graph theory. As an

extension of the classical coloring problem, the strong coloring problems, which were firstly

presented by M. Aigner et al.[1,2] and F. Harary[11], are of significance both in theory and in

practice. Although it is more difficult than the classical coloring problem, some meaningful

results about the vertex distinguishing edge coloring were obtained recently. For example, M.

Aigner[1,2], O. Favaron, et al.[9] and A. C. Burns[7] studied the strong edge-coloring for general

graphs and obtained some results. C. Bazgan, et al.[4] studied the vertex-distinguishing proper

coloring of graphs with large minimum degree and [5] that of general graphs. P. N. Balister,

et al.[3] studied the vertex distinguishing colorings of graphs with ∆(G) = 2. P. Wittmann[13]

studied the vertex-distinguishing edge-colorings of 2-regular graphs. R. A. Brualdi and J. J.

Quinn Massey[6] studied the Incidence and strong edge colorings of graphs. Z. Zhang and L.

Liu[14] have studied the adjacent vertex distinguishing edge coloring (also says the adjacent

strong edge coloring) of graphs, and presented the adjacent vertex distinguishing edge coloring

conjecture.
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In this paper, as another extension of strong coloring problems, we propose a new concept,

vertex strong total coloring, of graph and study the vertex strong total coloring of Halin-graph

and some special graphs.

Let G(V, E) be a graph with vertices set V (G) and edges set E(G). G[S] denotes the

subgraph of the graph G(V, E) induced by set S ⊂ V (G) or S ⊂ E(G). N(v) denotes the

adjacent vertices set of vertex v ∈ V (G), N [v] = N(v) ∪ {v}. Vk denotes the vertices set of

k-degree of the graph G(V, E), where k is a positive integer. For a face f0 of a plane graph,

V (f0) denotes the set of vertices on the boundary of the face f0.

Definition 1.1 A proper k-total coloring f of graph G(V, E) is said to be a k-vertex strong total

coloring of G(V, E), abbreviated as k-VSTC, if the elements in N [v] are colored with different

colors for every v ∈ V (G). The integer χvs
T (G) = min{k| there is a k-VSTC of G} is called the

vertex strong total chromatic number of graph G(V, E).

Definition 1.2[10] Let G(V, E) be a 3-connected plane graph. If the graph obtained from

G(V, E) by deleting all edges on the boundary of a face f0 is a tree, then G(V, E) is called a

Halin-graph, and f0 is called the outer face of G (others the inner face), the vertices in V (f0)

are called outer vertex (others the inner vertex).

It follows from the Definition 1.2 that the degree of all vertices of outer face f0 of a Halin–

graph is equal to 3.

It is obvious that χvs
T (G) ≥ ∆(G) for a simple connected graph G(V, E) with |V (G)| ≥ 3,

where ∆(G) is the maximum degree of the graph G(V, E).

Conjecture 1.1 (VSTCC) Let G(V, E) be a graph such that the order of each component is

at least 6, then χvs
T (G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G.

For the other terminologies we refer to references [8], [11].

2. Main results

We have proved in another paper that the following theorem holds.

Theorem 2.1 (1) For a cycle Cn, we have

χvs
T (Cn) =







3, for 2n ≡ 0(mod 3),
4, for 2n 6≡ 0(mod 3) and p 6= 5,
5, for n = 5.

(2) For a complete bipartite graph Km,n, we have χvs
T (Km,n) = m + n, m + n ≥ 3.

(3) For a tree G(V, E) with |V (G)| ≥ 3, we have χvs
T (G) = ∆(G) + 1.

(4) For a complete graph Kn, we have

χvs
T (Kn) =

{

n, for n ≡ 1(mod 2),
n + 1, for n ≡ 0(mod 2).
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Halin-graph is an important graph class, and its many parameters have been studied in

references.

Lemma 2.1[15] Let G(V, E) be a Halin-graph, then the following four statements hold in graph

G(V, E):

(1) The degrees of all outer vertices are equal to 3.

(2) Any two interior faces have exactly one common edge and each interior face has exactly

one common edge with outer face.

(3) If G 6∼= Wp, which is a wheel of order p, then there are at least two interior vertices of

G, and there always exists an interior vertex w which adjacent to only one interior vertex.

(4) If G 6∼= Wp, then there always exists such a vertex w satisfying the statement 3 of Lemma

2.1 that NG(w) = {u, v1, v2, . . . , vk}, xv1, vky ∈ E(G), v1 6= x, vk 6= y, 2 ≤ k ≤ ∆(G) − 1, and

graphs

G1 = G − {v1, v2, . . . , vk} + {xw, yw},

G2 = G − {vi, vi+1, . . . , vj} + {vi−1vj+1}, 2 ≤ i ≤ j < k, k ≥ 3

are also Halin-graph, where u is the interior vertex adjacent to w and v1, v2, . . . , vk are outer

vertices adjacent to w.

Lemma 2.2 For a wheel graph Wp with p = |V (Wp)| ≥ 6, we have χvs
T (Wp) = ∆(Wp) + 1 = p.

Proof It is clear that χvs
T (Wp) ≥ ∆(Wp) + 1 for a wheel graph Wp with p = |V (Wp)| ≥ 6.

We now prove that there exists a ∆(Wp) + 1-VSTC of Wp. Let V (Wp) = {v1, v2, . . . , vp},

E(Wp) = {vivp, i = 1, 2, . . . , p − 1, vjvj+1, j = 1, 2, . . . , p − 2, vp−1v1}. Then a ∆(Wp) + 1-VSTC

of Wp can be defined as follows:

f(vp) = p, f(vi) = i, i = 1, 2, . . . , p − 1;

f(vivp) = i + 1, i = 1, 2, . . . , p − 2, f(vp−1vp) = 1;

f(vivi+1) = i + 3, i = 1, 2, . . . , p − 3, f(vp−3vp−2) = 1, f(vp−2vp−1) = 2, f(vp−1v1) = 3.

Clearly, f is a ∆(Wp) + 1-VSTC of Wp. The lemma is thus proved. 2

Theorem 2.2 Let G(V, E) be a Halin-graph with ∆(G) ≥ 6. Then χvs
T (G) = ∆(G) + 1.

Proof We prove this theorem by using induction method on |V (G)|. The proof of ∆(G) ≥ 6

is the same as that of ∆(G) = 6. Therefore, without lose of generality, we just prove the case

of ∆(G) = 6. In the following process, C = {1, 2, 3, 4, 5, 6, 7} denotes a set of seven colors. W

denotes a set consisting of all vertices w in the statements 3 and 4 of Lemma 2.1.

Assume that the Theorem 2.2 holds for |V (G)| < p. We now prove that it holds for

|V (G)| = p.

For a k-vertex strong total coloring f of graph G(V, E), we use f(s) to denote the color of

the element s ∈ V ∪ E. In the following process, we consider the vertex w ∈ W , of which the

degree is minimum.
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Case 1. When d(w) = 3, we denote NG(w) = {u, v1, v2} and define a new graph as

G′ = G − {v1, v2} + {xw, yw}.

It follows from Lemma 2.1 that G′ is also a Halin-graph with ∆(G′) = ∆(G) and |V (G′)| <

|V (G)| = p. By the induction hypothesis, G′ has a (∆(G)+1)-VSTC g. Based on the (∆(G)+1)-

VSTC g of G′, we now define a (∆(G) + 1)-VSTC f of graph G(V, E) as follows:

f(v1v2) = g(w), f(v1) ∈ C \ {g(w), g(u), g(x1), g(x), g(y)},

f(v2) ∈ C \ {g(w), g(u), g(x), f(v1), g(y), g(y1)},

f(xv1) ∈ C \ {g(x1x), g(x), f(v1), f(v1v2)},

f(yv2) ∈ C \ {g(y1y), g(y), f(v2), g(v1, v2)},

f(v1w) ∈ C \ {g(wu), g(w), f(v1), f(xv1)},

f(v2w) ∈ C \ {g(wu), g(w), f(v2), f(v1w), f(yv2)}.

The colors of other elements of the graph G(V, E) are the same as that of g. Obviously, f

is a (∆(G) + 1)-VSTC of G.

Case 2. When d(w) = 4, we denote NG(w) = {u, v1, v2, v3} and define a new graph as

G′ = G − {v1, v2, v3} + {xw, yw}.

It follows from the Lemma 2.2 that G′ is also a Halin-graph with ∆(G′) = ∆(G) and |V (G′)| <

|V (G)| = p. By the induction hypothesis, there exists a (∆(G)+1)-VSTC g of G′. Based on the

(∆(G) + 1)-VSTC g of G′, we now define a (∆(G) + 1)-VSTC f of G as follows:

f(v1) ∈ C \ {g(w), g(x1), g(x), g(u)},

f(v2) ∈ C \ {g(w), g(u), g(x), f(v1), g(u1)},

f(v3) ∈ C \ {g(y1), g(y), f(u), g(w), f(v1), f(v2)}.

For each edge in {wv1, wv2, wv3}, except the un-colored adjacent or incident vertices and

edges on the boundary of f0, the number of its incident or adjacent elements is at most 6.

Hence, there is always one color to color edges wv1, wv2 and wv3, respectively. For each edge in

{xv1, v1v2, v2v3, v3y}, the number of its incident or adjacent elements is also at most 6. Therefore,

there is always one color to color xv1, v1v2, v2v3 and v3y, respectively. The colors of other

elements of G are the same as that of g of G′. Obviously, f is a (∆(G) + 1)-VSTC of G.

Case 3. When d(w) = 5, we denote NG(w) = {u, v1, v2, v3, v4} and define a new graph as

G′ = G − {v1, v2, v3, v4} + {xw, yw}.

It follows from Lemma 2.2 that G′ is also a Halin-graph with ∆(G′) = ∆(G) and |V (G′)| <

|V (G)| = p. By the induction hypothesis, there exists a (∆(G) + 1)-VSTC g of G′. It is obvious

that g(x), g(y) 6∈ {g(u), g(w)}.
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Based on g of graph G′(V, E), we now define a (∆(G) + 1)-VSTC f of the graph G(V, E)

as follows:

f(v3) = g(x), f(v2) = g(y), f(xv1) = g(xw), f(yv4) = g(yw),

f(v1) ∈ C \ {g(x1), g(x), g(w), g(u), f(v2)},

f(v4) ∈ C \ {g(y1), g(y), g(w), g(u), f(v1), f(v3)},

f(v1w) ∈ C \ {g(wu), g(w), f(v1), f(xv1)},

f(v2w) ∈ C \ {g(wu), g(w), f(v2), f(v1w)},

f(v4w) ∈ C \ {g(wu), f(v1w), f(v2w), f(v4), g(w), g(v4y)},

f(v3w) ∈ C \ {g(wu), f(v1w), f(v2w), f(v4w), g(w), f(v3)}.

For each edge in {v1v2, v2v3, v3v4}, the number of its incident or adjacent elements is at

most 6. So there is always one color to color v1v2, v2v3 and v3v4, respectively. The colors of

other elements of G are same as that of g of G′. Obviously, f is a (∆(G) + 1)-VSTC of G.

Case 4. When d(w) = 6. Denotes NG(w) = {u, v1, v2, v3, v4, v5}. We define a new graph as

G′ = G − {v2, v3, v4} + {v1v5}.

It follows from Lemma 2.2 that G′ is also a Halin-graph with ∆(G′) = ∆(G) and |V (G′)| <

|V (G)| = p. By the induction hypothesis, there exists a (∆(G) + 1)-VSTC g of graph G′(V, E).

Based on the g, we now define a (∆(G) + 1)-VSTC f as follows: Let

f(v2) ∈ C \ {g(w), g(u), g(x), g(v1), g(v5)},

f(v4) ∈ C \ {g(w), g(u), g(y), g(v1), g(v5), f(v2)},

f(v3) ∈ C \ {g(w), g(u), g(v1), f(v2), f(v4), g(v5)}.

Subcase 4.1 If {f(v2), f(v3), f(v4)} = {g(v1w), g(uw), g(v5w)}, then

{g(v1), g(u), g(v5)} ∩ {g(v1w), g(uw), g(v5w)} = ∅.

Firstly, let f(v2w) = g(v1), f(v3w) = g(u), f(v4w) = g(v5).

For each edge in {v1v2, v2v3, v3v4, v4v5}, the number of its incident or adjacent elements is

at most 6. Hence there is always one color to color v1v2, v2v3, v3v4 and v4v5, respectively. The

colors of other elements of G are the same as that of g of G′. Obviously, f is a (∆(G)+1)-VSTC

of G.

Subcase 4.2 {f(v2), f(v3), f(v4)} 6= {g(v1w), g(uw), g(v5w)}.

Subcase 4.2.1 If {g(v1), g(v5), g(u)} = {g(v1w), g(uw), g(v5w)}, then let

f(v2w) = g(v3), f(v3w) = f(v4), f(v4w) = f(v2).

For each edge in {v1v2, v2v3, v3v4, v4v5}, the number of its incident or adjacent elements is at

most 6. Therefore, there is always one color to color v1v2, v2v3, v3v4 and v4v5, respectively. The
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colors of other elements of G are the same as that of g of G′. Obviously, f is a (∆(G)+1)-VSTC

of G.

Subcase 4.2.2 {g(v1), g(v5), g(u)} 6= {g(v1w), g(uw), g(v5w)}.

Subcase 4.2.2.1 If {g(v1), g(v5), g(u)} /∈ {g(v1w), g(uw), g(v5w)}, the proof is similar as that

of Subcase 4.1, and is omitted here.

Subcase 4.2.2.2 If |{g(v1), g(v5), g(u)} ∩ {g(v1w), g(uw), g(v5w)}| = 1, without lose of gener-

ality, assume that g(v1) ∈ {g(v1w), g(uw), g(v5w)}, g(v5) and g(u) 6∈ {g(v1w), g(uw), g(v5w)}.

Then there are exactly two elements of {f(v2), f(v3), f(v4)} in the set {g(v1w), g(uw), g(v5w)}.

Without lose of generality, assume that f(v3) and f(v4) ∈ {g(v1w), g(uw), g(v5w)}, f(v2) 6∈

{g(v1w), g(uw), g(v5w)}, then let

f(v2w) = g(u), f(v3w) = g(v5), f(v4w) = f(v2).

For each edge in {v1v2, v2v3, v3v4, v4v5}, the number of its incident or adjacent elements is

at most 6. Hence there is always one color to color v1v2, v2v3, v3v4 and v4v5, respectively. The

colors of other elements of G are same as that of g of G′. Obviously, f is a (∆(G)+1)-VSTC of G.

Subcase 4.2.2.3 If there are exactly two elements of {g(v1), g(u), g(v5)} in the set {g(v1w), g(uw),

g(v5w)}. Without lose of generality, assume that

{g(v1), g(u)} ⊂ {g(v1w), g(uw), g(v5w)}, g(v5) 6∈ {g(v1w), g(uw), g(v5w)}.

Then there is exactly one element of {f(v2), f(v3), f(v4)} in the set {g(v1w), g(uw), g(v5w)}.

Without lose of generality, assume that f(v2) ∈ {g(v1w), g(uw), g(v5w)}, g(v3) and f(v4) 6∈

{g(v1w), g(uw), g(v5w)}. Then let

f(v2w) = g(v5), f(v4w) = f(v3), f(v3w) = f(v4).

For each edge in {v1v2, v2v3, v3v4, v4v5}, the number of its incident or adjacent elements is

at most 6. Hence there is always one color to color v1v2, v2v3, v3v4 and v4v5, respectively. The

colors of other elements of G are the same as that of g of G′. Obviously, f is a (∆(G)+1)-VSTC

of G.

From what was discussed above, the proof is thus complete. 2

Follows from the proving process of Theorem 2.2, the following theorem also holds.

Theorem 2.3 If G is a Halin graph of ∆(G) ≤ 5, then χvs
T (G) ≤ 6.
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