Vol. 18, No. 2 Feb., 2002

[Co(2, 3-tri)(ibn)Cl][ZnCl₄]体系一经式异构体的 晶体结构及体系异构体的理论计算研究

陶 朱* 祝黔江 薛赛凤

(贵州大学应用化学研究所、贵阳 550025)

用单晶 X-射线伤射分析方法解析了 [Co(2, 3-tri) (bu) Cl]²⁺ (2, 3-tri = N-(2-氨基乙基)-1, 3-丙二胺, bn = 1, 2-二氨基-2-甲基丙烷) 体系中一经式异构体 (m2-[Co(2, 3-tri) (bn) Cl] [ZnCb])。该晶体属单斜晶系,空间群 P_{21}/c , a = 11, 317(31 Å, b = 14, 931(4) Å, <math>c = 11, 646(3) Å. $\beta = 101, 046(5)^{\circ}$. V = 1931, 5(8) Å³. $D = 1, 757g \cdot cm^{-1}$. $Z = 4, F_{000} = 1048, R = 0, 0277, R = 0, 0824$ 。用量子化学从头计算方法,在赝势基组 RHF/LANL2DZ 的水平上对该体系的十个可能的几何异构体(四个经式异构体和六个面式异构体) 进行了结构优化以及各异构体基态能量计算。与两已测晶体的结构参数比较、键长的平均相对偏差约为 I. 7%,最大相对偏差为 3.25%; 键角的平均相对偏差约为 1%,最大相对偏差为 3.83%。比较其基态能量,经式异构体与面式异构体之间式段体之间以及经式异构体或面式异构体之间无明显的差别。因此,应有较多的几何异构体在台成或反应过程中出现。

关键词:	钴(皿)配合物	晶体结构	量化计算
分类号:	0614.8112		

我们已报道了标题体系的另一经式异构体 (m3-[Co(2, 3-tri)(ibn)Cl][ZnCl₄])的晶体结构¹¹, 并试图对原始合成的所有五带淋出物进行单晶制 备。经过一系列尝试后又得到一新的经式异构体单 晶(m2-[Co(2, 3-tri)(ibn)Cl][ZnCl₄])。对于可能存 在众多异构体的[Co(三元胺)(不对称二元胺)Cl]²⁺ 体系,配合物及其异构体的合成及分离、结构表征对 它们取代-重排等反应规律的研究起着至关重要的 作用。我们曾报道了利用二维核磁共振技术以及单 晶 X-射线衍射分析方法分别或联合进行钴(m配合 物及其异构体的结构解析或表征、取得了很好的结 果¹¹⁻⁶¹。但对于在一般合成中未能得到的异构体以 及它们在反应中出现的可能性、上述两种结构解析 方法无法预示。

量子化学从头计算方法最重要之处是对研究体 系中全部电子的 Coulomb 能和交换能进行全面计 算。由于在计算中双电子积分数目随轨道数的四次 方剧增而大大增加了运算时间。因此,被称为模型 势(model potential)或称赝势(pseudo potential)的半 从头计算方法^[1]用于含重元素分子的计算。Bonifacic 和 Huzinaga^[3-12]等对一系列原子和分子进行具体计算的成功、受到国际量子化学界的广泛重视。 但用于具有多异构体配合物体系构效关系的系统理 论研究还不多见^[6,13]。

我们在对 [Cn(2, 3-tri) (amp) Cl]²⁻及 [Co(3, 3-tri) (amp) Cl]²⁺两体系配合物及其异构体结构与性质关系的研究中、用赝势基组 LANL2DZ 对体系中可能的几何异构体进行了能量及结构优化的计算。计算结果与实验结果能较好地吻合。本文在获得两个 [Co(2, 3-tri) (ibn) Cl] [ZnCl₄]体系异构体晶体结构参数的基础上、拟用同样方法对该体系所有可能的几何异构体(参见图 1)的结构参数以及基态能量进行计算,以求从理论上对[Co(2, 3-tri) (ibn) Cl] [ZnCl₄]体系配合物性质进行预测和解释。

1 实验部分

1.1 控制碱水解

为制备更多的几何异构体.采用控制碱水解方 法以求获得在动力学阶段的碱水解产物。取 2g 未分 离的原始制备配合物的氯化物(含五种异构体)溶于

收稿日期:2001-07-02。收修改稿日期:2001-08-21。

贵州省省长基金资助项目。

^{*} 通讯联系人。

第一作者:陶 朱, 男, 46岁, 教授, 博士; 研究方向:配合物及分子设计。

陶 朱等: [C₀(2, 3-tri)(ibn)Cl][ZnCl]体系一经式异构体的 晶体结构及体系异构体的理论计算研究

· 155 ·

图 i [Co(2, 3-tri)(ibn)Cl]²⁻体系中所有可能的几何异构体
Fig. 1 Possible geometric isomers in [Co(2, 3-tri)(ibn)Cl]¹⁺ system

20g 水中,在强搅拌下将等体积的 1.0mol・L⁻⁻ 的氢 氧化钠溶液迅速到入配合物溶液后、立即用过量浓 盐酸溶液终止反应并使溶液酸浓度大于 8mol・ L⁻¹,在 100℃的油浴中加热半小时使水解产物又回 到氯取代配合物、浓缩后上 Dowex 50Wx2(H⁻型, 200~400 目)层析柱,2mol·dm⁻³盐酸为淋洗液、收 集得到七带配合物、经¹³C NMR 验证、其中两带为新 的异构体。

1.2 单晶的制备

将 0.5g 原始合成柱层析分离得到的第二带配 合物 (b2) 的二氯化物 ([Co(2, 3-tri) (ibn) Cl] Cl₂) 溶 于 25mL 浓盐酸、95℃ 的油浴中加热 5 小时后再浓 缩吸附到 Dowex 50Wx 2(H⁻型、200~400 目) 层析 柱、2mol·dm⁻³ 盐酸为淋洗液、收集得到两带配合 物。这两带配合物中第二带配合物 (b'2) 已被单晶 X-射线衍射分析法确定为 m3-[Co(2, 3-tri)(ibn)Cl] [ZnCl₄]·H₂O^[1]。而另一带配合物 (b'1) 浓缩过滤 后逐步 滴入 1.5mol·dm⁻³ H₂ZnCl₄ 溶液(1.5mole ZnCl₂ 溶于 250mL 浓盐酸,并稀释至 1000mL),随后 逐步滴加乙醇直至析出适合于单晶 X-射线衍射测

定的晶体。

1.3 晶体结构测定

选取尺寸大小近似为 0. 20mm × 0. 10mm × 0. 08 mm 的红色棱柱形单晶用 Bruker P4 四圆衍射仪收 集数据。石墨单色化 Mo Ka 射线, $\lambda = 0.071073$ nm, 扫描方式为 $\omega/2\theta$ (4° < 2 θ < 56°), 扫描速度 S = 16°·min⁻¹(in ω),收集到总的衍射点为 12727,其 中独立衍射点分别为 4426($R_{eff} = 0.0312$)。进行了 线 性 校 正、经 验 吸 收 校 正 ($T_{max} = 0.7677, T_{max} =$ 0. 6052)、LP 校正及第二消光校正 (系数为 0. 00000 (16))。结构解析为直接方法 (SHELXS-97)、氢原子 坐标由差值 Fourier 合成法得到。最后一轮最小二乘 精修(by SHELXL-97)用 4426 可观察点($I > 2.00\sigma$ (I)),修正 299 个可变参数。最后偏离因子为 R =0. 0277, $R_* = 0.0824_c$ ($R = \Sigma || F_u| - 1 F_c || / \Sigma$ $| F_0|; R_* = [<math>\Sigma w(|F_0| - |F_c|)^2 / \Sigma w |F_0|^2$]^{1/2}, w = $1/\sigma^2(F^0)$)

1.4 计算方法

在计算中参照晶体结构的几何构型构造初始几 何结构。并在此基础上通过调整配体的相对位置以 得到较为合理的几何构型。初始几何优化用 Hyperchem 程序包中的 INDO/1 法完成,进一步的能 量、结构优化用 Gaussian98w 中的 RHF 完成。体系中 涉及过渡金属钻,故用赝势基组 LANL2DZ 对该体 系进行计算。由于反应在溶液中进行,在计算中还 进行了溶剂化校正,溶剂化效应计算采用 Onsager 模型^[14~16]。

2 结果与讨论

2.1 晶体结构描述

异构体 m2 的四氯锌酸盐晶体结构参数: 单斜 晶系、空间群 $P2_1/c$ 、a = 11.317(3) Å、b = 14.931(4) Å、c = 11.646(3) Å、 $\beta = 101.046(5)^\circ$ 、V = 1931.5(8) Å³, $D_c = 1.757g \cdot cm^{-3}$, Z = 4, $F_{000} = 1048$, R = 0.0277, $R_s = 0.0824$ 。在一个晶胞结构中 含有 4 个配合物阳离子, 4 个 ZnCle²⁻ 阴离子(参见图 2a 和 b)。表 1 列出了配合物阳离子非氢原子的坐标 及热参数, 键长及键角分别列于表 2 和表 3 中 (cryst.)一栏, 栏中斜体字部分为一些结构参数的统 计结果。其他栏的数据及解释将在 2.2.1节讨论。与 m3[ZnCl₄] 晶体不同, m2[ZnCl₄] 晶体中配合物阳离 子是外消旋的, 晶胞结构中两种对映体之比为 1: 1。

从两异构体晶体结构键长的统计结果比较来 看,无论是配离子骨架键长之和(∑bonds1 = Co-Cl 键及五个 Co-N 键键长)还是所有非氢原的键长之和 (∑bonds2)几乎相同,分别是 12.10/12.15 和 30.13/30.17Å。但两异构体晶体结构键角变形 性^[13]的统计结果却有明显不同,分别是 30.67/ 28.4°(中心原子为钴原子的所有键角偏离 90°角的 绝对值的加和)和 86.94/78.6°(所有给出的键角偏 离标准键角如 90°或 109°28″的绝对值之和)。虽然我 们还无法对[Co(2, 3-tri)(ibn)Cl]²⁺体系所有可能的 异构体的性质——进行研究(还有三个异构体在实

表 1 m2-[co(2, 3-tri1(abn)Cl][ZnCl4]配合物中部分原子的坐标和热参数

Table 1Selected Atomic Coordinates(×10⁴) and Equivalent Isotropic Thermal Parameters(Å×10³)for the m2-[co(2, 3-tri)(ibn)Cl][ZnCL] Complex

	v	17	7	171 1		v	V	7	221 1
atom	<u></u>	1		eqr	atom	<u> </u>		<u> </u>	(rreg)
Co(1)	2016(1)	372(1)	7039(1)	24(1)	C(2)	821(2)	1676(1)	8896(2)	46(1)
CI(1)	[029(1)]	1114([)	5440(1)	41(1)	C(3)	2145(2)	1767(1)	8940(2)	41(1)
N(T)	491(1)	335(I)	7624(1)	35(1)	C(4)	3789(2)	1665(1)	7829(2)	42(1)
N(2)	2471(1)	1535(1)	7798(1)	29(1)	C(5)	4035(2)	(391(1)	6660(2)	45(1)
N(3)	3474(1)	494(1)	6375(1)	34(1)	C(6)	246612)	-1505(1)	6865(2)	40(1)
N(4)	1660(1)	-794(1)	6265(1)	37(1)	C(7)	2738(2)	-1347(1)	8179(2)	32(1)
N(5)	2920(1)	-342(1)	8331(1)	28(1)	C(8)	3892(2)	~ 1836(1)	8734(2)	47(1)
C(1)	395(2)	720(2)	8778(2)	46(1)	C(9)	1723(2)	- 1644(1)	8768(2)	48(1)

- 图 2a [Co(2, 3-tri)(ibn)Cl]²⁺体系中 m2 ZnCl₄的 分子结构
- Fig. 2a Perspective drawing of the m2 ZnCl₄ of [Col2, 3-tri)(ibn)Cl]²⁺ system

- 图 2b [Co(2, 3-tri)(ibn)Cl]²⁺体系中 m2 ZnCl₄的 晶胞堆积图
- Fig. 2b A general view of the unit cell of the m2 ZnCl₄ of [Co(2, 3-tri)(ibn)Cl]²⁺ system

第2期

陶 朱等: [Co(2, 3-tn)(ihn)Cl][ZnCl,]体系一经式异构体的 ______晶体结构及体系异构体的理论计算研究_____

· 157 ·

	表 2	nr2-[co12, 3-trr}{ibn)Cl][ZnCl4]配合物中部分原子的键长
Table 2	Selected	Bond Distances(Å) for the m2-[co(2, 3-tri)(ibn)C1][ZnCL] Complex

atom-stom	m2(cryst.)	m2(g)	m2(aq)	entor '	епог	m3{eryst.)	m3lgl	ու3(ոզ)	error	error
Co(1)-C1(1)	2.2694(6)	2.3029	2, 3121	1.48	1.88	2. 264(2)	2 2874	2 3016	1 03	1.66
$C_0(1)-N(1)$	1 9745(16)	2.032	2.0315	2 91	2.89	1,967(6)	2.0268	2 0278	3.04	3.09
$C_0(1)-N(2)$	1 9716(14)	2.0138	2 0141	2.14	2.16	1,986(5)	2.029	2. 0285	2.17	2.14
$C_0(1)-N(3)$	1.9601(16)	2 0164	2 0154	2.87	2.82	1.978(6)	2.0253	2.0221	2.39	2. 23
$C_0(1)-N(4)$	1.9657(15)	1.9974	L. 9965	1, 61	1.57	1.980(5)	2.0402	2. 0362	3.04	284
$C_0(1) - N(5)$	1.9631(14)	2. 0232	2.019	3.06	2.85	1.970(5)	2.0049	2.0021	1 77	1 63
N(1)-C(1)	1 485(3)	L. 5095	1.51	1 65	1.68	1 492(9)	1.5203	1 5178	190	1, 73
Σ bonds l	12 10	12 39	12.39	2.32	2.35	12.15	12.46	12.42	2, 21	2. 25
N(2)-C(3)	1 487(2)	1.5031	1. 5033	1.08	1.10	1.467(9)	1.5147	1.5133	3.25	3, 16
N(2)-C(4)	1.497(2)	1.5011	1.5013	0.27	0. 29	1.49(1)	1 5075	1 5078	1.17	1.19
N(3)-C(5)	1.492(2)	1 5097	1.509	L. 19	1 14].469(9)	1 5025	1. 5037	2. 28	2, 36
N(4)-C(6)	1.484(2)	1 498	1 4997	0.94	1.06	1.484(8)	1.5109	1.5133	1.81	1. 97
N(5)-C(7)	1.522(2)	L. 5357	1.5384	0,90	1.08	1.51717)	1. 5207	1. 5234	024	0 42
C(1)-C(2)	1.504(3)	1.527	1.5269	1.53	1.52	1.50(1)	1. 5228	1 5232	1.52	1 55
C(2)-C(3)	1 49613)	1.5287	1.5286	2.19	2.18	1.50(1)	1.5241	1 5244	161	1 63
C(4)-C(5)	1.49813)	1.5196	1. 5197	1 44	1.45	1.5111	1 5181	1 5178	0.54	0, 52
C(6) - C(7)	1.520(3)	1 5375	1, 5368	1 15	1.11	1.535(9)	1.538 t	1. 5373	v. 20	0. t5
C(7) - C(8)	1 528(3)	1.5398	1.5398	0.77	0.77	1.511(9)	1.5399	1.5398	191	1.91
C(7)-C(9)	1.512(3)	1.539	1. 539	L. 79] 79	1 55(1)	1, 5399	L. 5396	- 0. 65	~ 0. 67
Σ bands2	30, 13	30.63	30.64	1.68	1.70	30.17	30, 67	30.68	1.67	1.69

Errors: Calculated results * gas states on relative structure parameters of crystal (* * m aqueous mediam)

表 3 m2-{co(2, 3-tri)(ibn)Cl][ZnCL] 配合物中部分原子的键角

Table 3 Selected Bond Angles(°) for the $m2-[co(2, 3-tri)(ibn)Ci][ZnCl_4]$ Complex

ungles	m2(cryst_)	m2(g)	m2{ag}	error '	error	m3(cryst.	m3(g)	m3{aq}	enor*	ettor
N(1)-Co(1)-C1(1)	88.34(5)	87.57	87.57	- 0. 87	~ 0.87	90.2(2)	89.03	89.29	- l. 30	0.30
N(2)-Co(1)-C1(1)	89.0314)	90.12	89, 97	1. 22	í 05	95 1(2)	93.24	93.23	- 1 96	-0 01
N(3)-Coll)-Cl(1)	87.14(5)	86 67	86. 81	-054	-038	87 5(2)	87 96	88.12	0. 52	0 19
N(4)-Co(1)-C1(1)	91.7415)	89.77	89.81	-215	-2 10	172, 8(2)				
N(51-Col1)-C1(1)	175.11(4)					89.0(1)	88.90	88.62	-012	- 0.31
$N(t)-C_0(1)-N(2)$	92 31(6)	90.76	90 88	- 1.68	- 1, 55	91.3(3)	93.14	92 84	2, 02	- 0. 33
$N(1)-C_0(1)-N(3)$	175.14(6)					175 9(2)				
N(1)-Ca(1)+N(4)	91 00(7)	90.68	90.63	- 0.35	- 0, 40	91.713)	92.86	92.67	1.26	-021
N(1)-Co(f)-N(5)	94.72(6)	92.85	92 82	- 1. 97	- 2, 01	91.6(2)	91.43	91 54	- 0. 19	0.12
N(3)-Co(fl-N(2)	85.8416)	85 09	85.06	- 0. 87	~ 0. 91	85 5(3)	84.64	84, 73	~ (.00	0.10
$N(2)-C_0(1)-N(4)$	176_62(7)					91 8(2)	94.32	94. S2	2.75	0 21
$N(2)-C_0(1)-N(5)$	94.65(6)	96.54	96. 57	L. 99	2 03	175.0(2)				
N(3)-Co(1)-N(4)	90.91(71	93.45	93.40	2 80	2, 74	91.0(2)	90.45	90.25	-061	~ 0, 22
$N(3)-C_0(1)-N(5)$	89,91(61	93 35	93 23	3, 83	3.69	91.8(2)	90. 91	90 98	- 0, 97	0.08
$N(5) - C_0(1) - N(4)$	84,40(6)	83.56	83.63	~ 0, 99	- 0, 91	84 l(2)	83, 38	83.47	- 0. 85	0.10
distortion I	30.67	35.09	34. 68			28.4	32.44	31.79		
$C(1)$ -N(f)-C $_0(1)$	121 45(12)	121.84	121 84	0, 32	0, 32	119.615)	119.62	119 60	0.02	- 0, 02
$C(3)-N(2)-C_0(1)$	121, 20(11)	119.60	119.68	- 1. 27	- 1, 26	118,4í5)	118.42	118,48	0.02	0. VS
C(4)-N(2)-Co(l)	107.35(11)	108, 93	108. 91	1.47	1 46	108.4(5)	(08, 17	108.16	-021	~0 Ol
C(5)-N(3)-Co(1)	110.52112}	(09-34	109.44	- 1, 07	~ 0, 98	109.115)	(10.29	110.29	1, 09	0, 00
C(6)-N(4)-Co(1)	111.31(11)	110.91	110.85	- 0.36	~041	109.2(4)	109.25	109.40	0.04	0 14
C(7)-N(5)-Co(J)	114 DI(10)	113-30	113, 34	-062	-058	113.6(4)	115.02	114.99	1, 25	- 0. 03
C(2)-C(1)-N(1)	111 85(16)	112 06	112 09	0.19	0, 22	(11.8(6)	111 95	111 85	0.14	- 0.09
N(2)+C(3)-C(2)	111.54(15)	112.09	112.03	0.49	0.44	113 2(6)	112, 58	112.73	~ 0, 54	0.13
N(2)-C(4)-C(5)	107.52(15)	107.96	107.94	0.41	0.39	108,7(6)	108.76	108.78	0. 05	0,02
N(3)-C(5)-C(4)	107.54(16)	107.48	107.48	- 0. 06	- 0. 06	106.316)	106.98	106, 99	0.64	D. 01
N(4)-C(6)-C(7)	110. 56í 151	109.51	109.45	~ 0. 95	~ 1.00	108.1(5)	(10.38	110 32	2.11	~ 0. 06
N(5)-C(7)-C(6)	105.44(13)	105.89	105.76	0.42	0, 30	105.4(5)	(05. 77	105.67	0 35	- 0.10
N(5)-C(7)-C(8)	109.601143	109. 39	LO9.34	-019	~ 0, 24	110.8(5)	109.53	109.50	- 1. 14	- 0. 03
C(9)+C(71-N(5)	(09.55(15)	109 50	(09.51	- 0, 05	~ 0, 03	109.3(5)	109. 95	109.81	0, 59	- 0.13
C(3)-C(2)-C(1)	112.98(17)	114, 16	114.11	1.04	1 00	113.7(7)	112, 96	113.03	~0 65	0.06
C(3)-N(2)-C(4)	111.44(14)	111.83	111.82	0.35	0.34	110 2(6)	109 20	109.19	~ 0, 91	-0 01
C(8)-C[7)-C(6)	110, 15(36)	110. 60	110.71	0.46	0, 51	111 2(6)	111.67	111.83	0.42	0 14
C(9)-C(7)-C(6)	112.74(16)	111.53	111.57	~ 1. 07	- 1.04	110.9(6)	110.16	110. 26	- 0. 66	0.09
C(9)-C(7)-C(8)	109.28(16)	£09. 79	109. 85	0.46	0,52	109.2(5)	109.68	109 70	0.44	0.01
distortion2	86. 94	86.45	86.28			78 6	80 05	79.46		

 $Errors: \ Calculated \ results * \ gas \ states \ on \ relative \ structure \ parameters \ of \ crystal \ l \ * \ * \ in \ aqueous \ medium).$

维普资讯 http://www.cqvip.com

验中未观察到),但对[Co(2、3-tri)(amp)Ct]²⁺及 [Co(3, 3-tri)(amp)Cl]²⁺两体系构效关系的研究结 果¹¹³¹为这类体系结构与性质的理论研究提供了一 些可参考的依据。

2.2 量子化学研究及结果比较

2.2.1 结构参数比较

节表 2 和表 3 中 (g) 和 (aq) 栏中分别列出了采用 RHF/LANL2DZ 方法对该体系两已知异构体的 计算结果。-(g)和-(aq)栏分别表示气态以及在水为 介质的连续相中配合物离子的相关键长及键角,在 误差栏(error*)及(error**)分别给出了气态以及在 水为介质的连续相中配合物离子的相对与晶体结构 中键长及键角的相对误差。

从比较结果来看,计算结果的键长平均相对偏 差约为1.7%,键长的最大相对偏差为3.25%(m3 的N(2)-C(3));键角的平均相对偏差不到1%,最大 相对偏差为3.83%(m2 的N(3)-Co(1)-N(5))。无论 是键长还是键角,计算结果与实验结果吻合得相当 好。这为以量化计算结果代替实验结果进行配合物 及其异构体性质的预测以及与结构关系的研究提供 了依据。为节省篇幅,表4 仅列出了采用 RHF/ LANL2DZ 方法对该体系十个可能几何异构体计算 的统计结果(注:与表 2 及表 3 中统计结果相似)。

比较气态与水介质中同一配离子的结构参数, 键长略有增加。最大变化者 f3 有不到 0.02Å 的增 量: 键角变形性略有降低、最大变化者 B 的降幅不 到 2°。因此, 溶剂化效应有缓解因晶格能对配离子 中质点的约束作用,而这种"缓解"和"约束"将决定 不同状态下的配离子结构参数变化的大小。比较相 同状态下不同配离子,相应键长之和(Σ bundst及 Σ bonds2) 仍然是相差无儿,其中 m4 与 f1'相差最 大, 也仅有 0.071Å; 而键角变形性却有明显的差 别。如 ml 与 f3'键角变形性相差近 12°。考虑两对差 向经式异构体 m1/m2 与 m3/m4, 键角变形性规律 为 m2 ≈ m4> m1 ≈ m3。对于面式异构体 f1 和 f3, 由 于二元胺 ibn 上取代甲基更靠近占具较大空间的六 元螯合环,因而具有较大的变形性,故有fl>fl'和 B>B'。总体上看,经式异构体与面式异构体的变 形性无明显规律, m1/m3 与 f1'/f3'相近, m2/m4 与 其他面式异构体相近。

2.2.2 基态能量比较

表 5 给出了 RHF/LANL2DZ 方法对该体系的

表 4 在 RHF/LANL2DZ 水平上对该体系十个可能几何异构体计算的统计结果

Table 4	Summary of	Calculations fo	r the Te	a Geometric	Isomers of the	e Title System	on RHF.	/LANL2DZ I	Leve
---------	------------	------------------------	----------	-------------	----------------	----------------	---------	------------	------

						_						
mer-isoiners	ml(g)	ml(aq)	m2(g)	m2{aq}	m3(g)	m3(aq)	m4(g)	n:4(aq)				
Σ bonds t	12.4015	12.4041	12.3857	12.3886	12 4136	12 4183	12.3875	12 3926			_	
Σ bonds 2	30. 6656	30.6707	30 6344	30, 6411	30 6731	30, 6797	30. 6341	30.6443				
fac-isomers	fl(g)	f] aq}	fl'(g)	fl'íag}	f2(£}	f21aq}	f2′(g)	f2'(aq)	f31g1	<u>ГЗ(нq)</u>	f3'1e1	f3'(aq)
Σ bonds 1	12. 3961	12 4028	12.4144	12.4216	12 3888	12 3944	12. 3876	12.3939	12. 397	12 4028	12, 4099	12. 4194
Σ bonds 2	30. 6795	30, 6886	30. 705 (30, 7144	30.656	30. 6677	30, 6552	30.6675	30 6737	30. 6817	30 6981	30, 7114
mer-isomers	n:1 (g)	nil(aq)	m2(g)	m2(aq)	m3(g)	n.3(aq)	n:4(g)	m4(aq)				
distortion1	32 9314	31.8481	35.0944	34. 6812	32, 4426	31, 7852	35. 0494	34.8608			_	
distortion2	79.3314	78.7274	86, 4511	86 2814	80. 0484	79.4641	88.3514	87. 9409				
fac-isomers	fl(g)	(pa) Il	fl'(g)	f1'(aq)	(2) g)	f2(aq)	ſ2'(g)	f2'lay}	ГЗ(g)	(aq)	$\Omega'(g)$	f3'{aq1
distortion l	38. 937	38.6117	34. L799	33 1749	35, 7457	34.919	35.7435	35 0588	41.4531	41.1036	33.238	31, 9998
distortion2_	88. 4729	88. 3642	83 1702	81.9671	87.4621	86. 3417	87 5648	86, 2747	91 2625	90, 7249	83 2058	81.5592

表 5 各异构体在不同状态下的总能量及能量差

Table 5 Total Energy of the Isomers and their Difference under Gaseous Phase or Aqueous Solution

		m2	Ear	m4		
$E(\mathbf{g})$	- 787.0159997	- 787. 0195595	- 787.0154111	- 787 0192136		
<i>Е</i> (нg)	- 787 0193092	- 787. 0212895	- 787. 0198595	- 787. 0221648		
$\Delta E(g \cdot aq)$	0.00331	0.00173	0.00445	0 00295		
	fl	f'1	c	f'2	8	f'3
<i>E</i> (g)	- 787.014467	- 787. 010264	- 787 012653	- 787, 012392	- 787 0174233	- 787.010756
E(aq)	- 787.019312	- 787 015481	- 787. 016922	– 787. 015935	- 787. 021156	- 787.016272
$\Delta E(g-aq)$	0.00485	0.00522	0, 00427	0.00354	0 00552	0.00373

十个可能几何异构体基态能量的相关计算结果。 分析表中数据可得:

(1) 经式结构中的 ml 和 m3 比 m2 和 m4 能量高,后一组应较稳定.这与 m2 在浓盐酸中加热的转化的产物 m2 与 m3 的分布分别为 75% 和 25% 一致。

(2) 经式结构与面式结构的异构体在能量上没 有明显差异,有的经式结构的能量较面式高,ml和 m3 均较f3 的高。这与[Co(2,3-tri)1amp)Cl]²*及[Co (3,3-tri)(amp)Cl]²*两体系形成鲜明对照不同,这 两个体系经式结构与面式结构的异构体的基态能量 分别至少相差 17kJ·mol⁻¹和 36kJ·mol⁻¹.而实验 结果也证实没有观察到面式异构体。

(3)所有异构体的能量差别都有不算太大,考 虑溶剂化效应后、最大能量差(m4 与 fl'之间) 17.5kJ·mol⁻¹,预测在台适的反应条件下有更多的 异构体可能出现。这在控制碱水解反应中已观察到 两种新的异构体出现。通常、对于{Co(2,2-tri)(二元 胺)Cl]²*、[Co(2,3-tri)(二元胺)Cl]²*及{Co(3,3-tri) (二元胺)Cl]²*体系,经式异构体出现的几率要高于 面式异构体。因此、我们推测在七种已获得的几何 异构体中、至少有三种是面式异构体。

关于这七种已获得的异构体(其中 m2 和 m3 已 表征)的结构解析以及进一步合成分离出新的异构 体的尝试还正在进行中。

参考文献

 ZHU Qian-Jiang(祝黔江), TAO Zhu(陶 朱), XU Yuan-Zhi(徐元植) Wuji Huaxue Xuebao (Chinese Journal of Inorganic Chemistry), 2000, 16(6), 899

- [2] TAO Zhu(陶 朱), Jackson W. G. Wan Huaxue Xuebao (Chinese Journal of Inorganic Chemistry), 2000.16(3), 485.
- [3] ZHU Qian-Jiang(視黔江), TAO Zhu(陶 朱), XU Yuan-Zhi(徐元植) Huaxue Xueban (Acta Chimica Sinica), 2000, 58(11), 1434.
- [4] TAO Zhu(陶 朱)、ZHU Qian-Jiang(祝黔江), XUE Sai-Feng(薛赛凤) et al Wup Huaxue Xuebao(Chanese Journal of Inorganic Chemistry), 2001, 17(11, 65.
- [5] ZHU Qian-Jiang(祝黔江), TAO Zhu(陶 朱), XUE Sai-Feng(薛赛风) et al Wuji Huaxue Yuebao(Chinese Journal of Inorganic Chemistry), 2001, 17(1), 70
- [6] TAO Zhu (陶 朱), Jackson W. G. Wuji Huaxue Xuebno (Chinese Journal of Inorganic Chemistry), 2001, 17(6)...
- [7] XU Guaug-Xian(徐光宪), LI Le-Min(黎乐民), WANG De-Min(王德民) Principle of Quantum Chemistry and ab initio Method(量子化学一基本原理和从头计算法), Beijing: Science Press, 1985.
- [8] Bonifacte V. S. Huzinaga J. Chem. Phys., 1974, 60, 2779.
- [9] Bonifacie V. S. Huzmaga J Chem. Phys., 1975, 62, 1507.
- [10] Bondacie V. S. Huzinaga J. Chem. Phys., 1975, 62, 1509.
- [11]Bonifacic V. S. Huzinaga J. Chem. Phys., 1976, 64, 956.
- [12]Bonifacic V. S. Huzinaga J. Chem. Phys., 1976, 65, 2322.
- [13]ZHU Qian-Jiang(祝黔江), TAO Zhu(陶 朱) Hurrue Xuebao(Acta Chimica Sanica), 2001, 59(7), 1106.
- [14] Wong W. M., Frisch M. J. Wiberg K. B. J. Am. Chem. Soc., 1991, 113, 4776.
- [15] Wong W. M., Wiberg K. B., Frisch M. J. J. Am. Chem. Soc., 1992, 114, 523.
- [16] Hay P. J., Walt W. R. J. Chem. Phys., 1985, 82, 299.

第18卷

Crystal Structure and Computational Study on the Isomers of [Co(2, 3-tri)(ibn)Cl][ZnCl4] System

TAO Zhu* ZHU Qian-Jiang XUE Sai-Feng (Institution of Applied Chemistry, Guizhou University, Guiyang 550025)

The crystal structure of the m2 isomer of $[Co(2, 3-tri) (ibn) Cl] [ZnCl_4]$ has been determined (2, 3-tri = N-(2-Aminoethyl)-1, 3-propanediamine, ibn = 1, 2-diamino-2-methylpropane). Crystal data: monoclinic, $P2_1/c$, a = 11, 317(3) Å, b = 14, 931(4) Å, c = 11, 646(3) Å, $\beta = 101, 046(5)^\circ$, V = 1931, 5(8) Å³. $D_c = 1, 757g \cdot cm^{-3}$, Z = 4, $F_{000} = 1048$. R = 0, 0277, $R_* = 0, 0824$. A comparison the crystal structures of the m2- and m3- $[Co(2, 3-tri)(ibn)Cl][ZnCl_4]$ complexes with an *ab initio* computational result(RHF/LANL2DZ optimised structure) shows that the errorsmax are 3, 25% in bond lengths and 3, 83% in angles, an average errors are 1, 7% in bond lengths and 1% in angles; A comparison of ground energies between the isomers suggests that the most geometric isomers in the $[Co(2, 3-tri)(ibn)Cl]^{2+}$ system could be observed due to no significant difference of ground energy among the isomers.

Keywords: cobalt (II) complexes crystal structure calculation of quantum chemistry