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STABILITY AND TRAVELING WAVES OF AN
EPIDEMIC MODEL WITH RELAPSE AND

SPATIAL DIFFUSION∗

Zhiping Wang1,† and Rui Xu1

Abstract An epidemic model with relapse and spatial diffusion is studied.
Such a model is appropriate for tuberculosis, including bovine tuberculosis in
cattle and wildlife, and for herpes. By using the linearized method, the local
stability of each of feasible steady states to this model is investigated. It is
proven that if the basic reproduction number is less than unity, the disease-
free steady state is locally asymptotically stable; and if the basic reproduction
number is greater than unity, the endemic steady state is locally asymptot-
ically stable. By the cross-iteration scheme companied with a pair of upper
and lower solutions and Schauder’s fixed point theorem, the existence of a
traveling wave solution which connects the two steady states is established.
Furthermore, numerical simulations are carried out to complement the main
results.
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1. Introduction

In most epidemic models, individuals are often divided into several classes such
as susceptible, infective and recovered classes. For some diseases, such as human
tuberculosis and Herpes simplex virus type 2 (herpes), recovered individuals may
relapse with reactivation of latent infection and revert back to the infective class.
For human tuberculosis, incomplete treatment can lead to relapse, but relapse can
also occur in patients who took a full course of treatment and were declared cured
(see, e.g., Chin Martin [7] and van den Driessche [12]). Important features of
herpes are that an individual once infected remains infected for life, and the virus
reactivates regularly with reactivation producing a relapse period of infectiousness
(see, e.g., Blower etc. [1], Chin [3], van den Driessche [14], VanLandingham [15] and
the references therein). Many relapse phenomenon of disease observed in clinical
study is an important feature of some animal and human disease (see, e.g., Bowong
& Aziz-Alaoui [2], Noble [8] and Tudor [11]).
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van den Driessche and Zou [14] formulated and studied a more realistic model by
considering a more general relapse distribution and investigating the consequences
of different assumptions about the relapse period. The model is given by

Ṡ(t) = d− dS(t)− βS(t)I(t),

İ(t) = βS(t)I(t)− (d+ γ)I(t)−
∫ t

0

γI(ξ)e−d(t−ξ)P (t− ξ)dξ,

Ṙ(t) = γI(t)− dR(t) +

∫ t

0

γI(ξ)e−d(t−ξ)P (t− ξ)dξ,

(1.1)

where S(t), I(t) and R(t) are the proportions of susceptible, infectious and recov-
ered individuals at time t, respectively. d > 0 is the birth rate and death rate
constant, per capita natural death rate of the population (Note that for simplicity,
the authors only consider a closed community in which the birth rate and death
rate constants are equal). β > 0 is the average number of effective contacts of an
infectious individual per unit time. γ > 0 is the recovery rate constant assuming
that the infective period is exponentially distributed. The term e−d(t−ξ) in the
integral accounts for the death of infective individuals. P (t) is the fraction of recov-
ered individuals remaining in the recovered class t time units after recovery, which
satisfies the following properties:

(H1) P : [0,∞) → [0, 1] is differentiable except at possibly finitely many points
where it may have jump discontinuities, non-increasing and satisfies P (0) = 1,
limt→∞ P (t) = 0 and

∫∞
0

P (u)du is positive and finite.

In [14], by utilizing the theory of asymptotically autonomous system, van den Driess-
che and Zou studied the dynamic behavior of solutions of (1.1). Three particular
forms for P (t), such as negative exponential relapse distribution, compact support,
and step function, are investigated.

If all individuals remain in the recovered class τ time units before relapsing, P (t)
is the step function given by

P (t) =

{
1, t ∈ [0, τ ],
0, t > τ,

and system (1.1) becomes

Ṡ(t) = d− dS(t)− βS(t)I(t),

İ(t) = βS(t)I(t)− (d+ γ)I(t) + γe−dτI(t− τ),

Ṙ(t) = γI(t)− γe−dτI(t− τ)− dR(t).

(1.2)

For this case, the endemic equilibrium of (1.1) is proved to be locally asymptot-
ically stable if the basic reproductive number is greater than unity, and globally
asymptotically stable if, in addition, the relapse time is short.

Note that it is implicitly assumed that the population are well mixed, and the
spatial mobility of individuals has been ignored in model (1.2) as well as most other
epidemic models. In reality, the environment in which an individual lives is often
heterogeneous making it necessary to distinguish the locations. For this reason, the
spatial effects cannot be neglected in studying the spread of epidemics. In fact,
many investigators have introduced population movements into related equations
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for epidemiological modeling and simulations in efforts to understand the most basic
features of spatially distributed interactions (see, e.g., Gan etc. [4], Kuperman &
Wio [5], Maidan & Yang [6], Peng & Liu [9], Ruan & Xiao [10], Wang & Wang [16],
Wang & Zhao [17], Xu & Ma [18], Yu etc. [19], Zhang & Xu [20]).

Motivated by the works of van den Driessche & Zou [14], Kuperman [5], Yu
etc. [19], and Gan etc. [4], in this paper, we consider the effect of spatial diffusion
and disease relapse on the dynamics of infectious disease. To this end, we are
concerned with the following delayed reaction diffusion system:

∂S(x, t)

∂t
= d1

∂2S(x, t)

∂x2
+ d− dS(x, t)− βS(x, t)I(x, t),

∂I(x, t)

∂t
= d2

∂2I(x, t)

∂x2
+ βS(x, t)I(x, t)− (d+ γ)I(x, t) + γe−dτI(x, t− τ),

∂R(x, t)

∂t
= d3

∂2R(x, t)

∂x2
+ γI(x, t)− γe−dτI(x, t− τ)− dR(x, t),

(1.3)

where S(x, t), I(x, t) and R(x, t) represent the proportions of the susceptible, infec-
tious and recovered individuals at time t and location x, respectively. The param-
eters d1, d2 and d3 are the corresponding diffusion rates for the three populations,
respectively.

Accompanied with (1.3), we take the initial condition

S(x, t) = ρ1(x, t) > 0, I(x, t) = ρ2(x, t) > 0,

R(x, t) = ρ3(x, t) > 0, ρi(x, 0) > 0,
(1.4)

where t ∈ [−τ, 0], x ∈ R, i = 1, 2, 3. It is easy to see that the solution of the initial
value problem (1.3) and (1.4) exists globally and remains nonnegative.

The organization of this paper is as follows. In the next section, we investigate
the local stability of each of feasible steady states of system (1.3) by using the
linearized method. In Section 3, by constructing a pair of upper-lower solutions,
we use the cross iteration method and Schauder’s fixed point theorem to prove the
existence of traveling wave solutions to system (1.3). In Section 4, numerical simu-
lations are presented that complement the theoretical results. We briefly summarize
our results in Section 5.

2. Local stability of steady states

In this section, by analyzing the corresponding characteristic equations, we inves-
tigate the local stability of steady states to system (1.3) with the initial conditions
(1.4). Note that in system (1.3), the last equation is decoupled from the first two
equations and thus it is sufficient to consider the following subsystem

∂S(x, t)

∂t
= d1

∂2S(x, t)

∂x2
+ d− dS(x, t)− βS(x, t)I(x, t),

∂I(x, t)

∂t
= d2

∂2I(x, t)

∂x2
+ βS(x, t)I(x, t)− (d+ γ)I(x, t) + γe−dτI(x, t− τ).

(2.1)

By means of the method of the next generation matrix (see, for example, van
den Driessche & Watmough [13]), one obtains the basic reproduction number of
system (2.1) as follows:

R0 =
β

d+ γ − γe−dτ
,
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which describes the average number of newly infected individuals at the beginning
of the infectious process. It is easy to show that system (2.1) always has a disease-
free uniform steady state E0(1, 0). Furthermore, if R0 > 1, system (2.1) has a
unique endemic steady state E∗(S∗, I∗), where

S∗ =
d+ γ − γe−dτ

β
, I∗ =

d− dS∗

βS∗ .

For any feasible uniform steady state (S0, I0), the linearized system of (2.1) at
(S0, I0) is

∂S(x, t)

∂t
=d1

∂2S(x, t)

∂x2
− βI0S(x, t)− dS(x, t)− βS0I(x, t),

∂I(x, t)

∂t
=d2

∂2I(x, t)

∂x2
+ βI0S(x, t) + βS0I(x, t)− (d+ γ)I(x, t)

+ γe−dτI(x, t− τ),

(2.2)

which admits non-trivial solutions with the form(
S(x, t)
I(x, t)

)
=

(
c1
c2

)
eλt+ikx

if and only if∣∣∣∣ λ+ d1k
2 + d+ βI0 βS0

−βI0 λ+ d2k
2 − βS0 + d+ γ − γe−dτe−λτ

∣∣∣∣ = 0,

where λ is a complex and k is a real number.

Theorem 2.1. If R0 < 1, E0 is locally asymptotically stable. If R0 > 1, E0 is
unstable, and E∗ is locally asymptotically stable.

Proof. Letting (S0, I0) = (1, 0) in (2.2), it follows that

(λ+ d1k
2 + d)(λ+ d2k

2 + d+ γ − β − γe−dτe−λτ ) = 0. (2.3)

From the first factor of (2.3), we obtain that λ = −d1k
2 − d < 0, and from the

second factor of (2.3), we get

λ = −d2k
2 − d− γ + β + γe−dτe−λτ . (2.4)

If R0 < 1, we claim that all roots of (2.4) satisfy Reλ < 0. Otherwise, there
exists a root λ0 of (2.4) with Reλ0 > 0. Hence, from (2.4), we could deduce that

Reλ0 = −d2k
2−d−γ+β+γe−dτe−τReλ0 cos(τ Imλ0) 6 (d+γ−γe−dτ )(R0−1) < 0,

a contradiction. Therefore, E0 is linearly asymptotically stable if R0 < 1.
If R0 > 1, we claim that (2.4) has at least one positive real root. Let

g1(λ, k) := λ+ d2k
2 + d+ γ − β − γe−dτe−λτ ),

then for k small, we have

g1(0, k) = d2k
2 + (d+ γ − γe−dτ )(1−R0) < 0, g1(∞, k) = ∞,
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which indicates that g1(λ, k) has at least one positive real root, and accordingly, E0

is linearly unstable.
Letting (S0, I0) = (S∗, I∗) in (2.2), it follows that

λ = − β2S∗I∗

λ+ d2k2 + γe−dτ (1− e−λτ )
− (d1k

2 + d+ βI∗). (2.5)

We claim that all roots of (2.5) have negative real parts. Otherwise, suppose that
there exists a (a0+iω0, k0) satisfying with a0 > 0. Then from (2.5), we could deduce
that

a0 =− β2S∗I∗[a0 + d2k
2
0 + γe−dτ (1− e−a0τ cos(ω0τ))]

[a0 + d2k20 + γe−dτ (1− e−a0τ cos(ω0τ))]2 + [γe−dτe−a0τ sin(ω0τ)) + ω0]2

− (d1k
2 + d+ βI∗)

<0,

a contradiction. Therefore, E∗ is linearly asymptotically stable for R0 > 1. The
proof is complete.

3. Existence of traveling waves

In this section, we investigate the existence of traveling wave solutions to system
(1.3). The technique of the proofs is to use the Schauder’s fixed point theorem,
the method of upper-lower solutions and its associated cross iteration scheme. For
simplicity, in this section, we assume that d1 = d2 = D.

Denoting N = S + I, then system (2.1) is equivalent to the following system

∂N

∂t
=D

∂2N

∂x2
+ d− dN(x, t)− γI(x, t) + γe−dτI(x, t− τ),

∂I

∂t
=D

∂2I

∂x2
+ β(N(x, t)− I(x, t))I(x, t)− (d+ γ)I(x, t)

+ γe−dτI(x, t− τ).

(3.1)

Let N̂ = 1 −N , then system (3.1) is transformed into (omitting the hat on N for
simplicity)

∂N

∂t
=D

∂2N

∂x2
+ γI(x, t)− dN(x, t)− γe−dτI(x, t− τ),

∂I

∂t
=D

∂2I

∂x2
+ β(1−N(x, t)− I(x, t))I(x, t)− (d+ γ)I(x, t)

+ γe−dτI(x, t− τ).

(3.2)

A traveling wave solution of (3.2) is a solution (S(x, t), I(x, t)) of the form
S(x, t) = ϕ(x + ct), I(x, t) = φ(x + ct), where ϕ, φ ∈ C2(R,R) and c > 0 is a con-
stant corresponding to the wave speed. On substituting S(x, t) = ϕ(x+ct), I(x, t) =
φ(x + ct) and denoting the traveling wave coordinate x + ct still by t, we derive
from (3.2) that

Dϕ′′(t)− cϕ′(t) + f1(ϕ, φ)(t) = 0,

Dφ′′(t)− cφ′(t) + f2(ϕ, φ)(t) = 0,
(3.3)
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where

f1(ϕ, φ)(t) = f1(ϕ, φ(0), φ(−τ))(t) := γφ(t)− dϕ(t)− γe−dτφ(t− cτ),

f2(ϕ, φ)(t) = β(1− ϕ(t)− φ(t))φ(t)− (d+ γ)φ(t) + γe−dτφ(t− cτ).
(3.4)

Eq. (3.3) will be solved subject to the following boundary value conditions:

lim
t→−∞

(ϕ(t), φ(t)) = (0, 0), lim
t→+∞

(ϕ(t), φ(t)) = (k1, k2) := (1− S∗ − I∗, I∗). (3.5)

We define the upper and lower solutions of system (3.3) as follows.

Definition 3.1. A pair of continuous functions Φ = (ϕ, φ) and Φ = (ϕ, φ) are
called a pair of upper-lower solutions of (3.3), if there exists a set S = {Ti ∈
R, i = 1, 2, · · · , n} with finite points such that, Φ

′
and Φ′ are twice continuously

differentiable on R \ S and satisfy

Dϕ
′′
(t)− cϕ

′
(t) + f1(ϕ, φ(0), φ(−τ))(t) 6 0,

Dφ′′(t)− cφ′(t) + f2(ϕ, φ)(t) 6 0,

and
Dϕ′′(t)− cϕ′(t) + f1(ϕ, φ(0), φ(−τ))(t) > 0,

Dφ′′(t)− cφ′(t) + f2(ϕ, φ)(t) > 0

for t ∈ R \ S.

Lemma 3.1. There exist constants β1, β2 > 0 such that

f1(ϕ1, φ1(0), φ2(−τ))− f1(ϕ2, φ2(0), φ1(−τ)) + β1[ϕ1(0)− ϕ2(0)] > 0,

f2(ϕ1, φ1)− f2(ϕ1, φ2) + β2[φ1(0)− φ2(0)] > 0,

where ϕi, φi ∈ C([−τ, 0], R), i = 1, 2 with (0, 0) 6 (ϕ2, φ2) 6 (ϕ1, φ1) 6 (M1,M2),
Mj > kj(j = 1, 2) are positive constants.

Proof. It is not difficult to verify that

f1(ϕ1, φ1(0), φ2(−τ))− f1(ϕ2, φ2(0), φ1(−τ)) =γφ1(0)− dϕ1(0) + dϕ2(0)− γφ2(0)

+ γe−dτ (φ2(−τ)− φ1(−τ))

>− d(ϕ1(0)− ϕ2(0)),

f2(ϕ1, φ1)− f2(ϕ1, φ2) =β(1− ϕ2(0)− φ1(0))φ1(−τ) + γe−dτφ1(−τ)

− β(1− ϕ1(0)− φ2(0))φ2(0)− γe−dτφ2(−τ)

− (d+ γ)(φ1(0)− φ2(0))

>− (βφ1(0) + d+ γ)(φ1(0)− φ2(0)).

Let β1 = d and β2 = βM2 + d+ γ, then the proof is complete.
Define a set of functions

C[0,M ](R,R2) := {(ϕ, φ) ∈ C(R,R2)|0 6 ϕ(s) 6 M2, 0 6 φ(s) 6 M3 for s ∈ R},

and two operators H = (H1,H2) and F = (F1, F2) from C[0,M ](R,R2) to (R,R2) by

H1(ϕ, φ)(t) = f1(ϕ, φ)(t) + β1ϕ(t), H2(ϕ, φ)(t) = f2(ϕ, φ)(t) + β2φ(t),
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Fi(ϕ, φ)(t)

=
1

D(λi2 − λi1)

[∫ t

−∞
eλi1(t−s)Hi(ϕ, φ)(s)ds+

∫ ∞

t

eλi2(t−s)Hi(ϕ, φ)(s)ds

]
,

where

λi1 =
c−

√
c2 + 4βiD

2D
, λi2 =

c+
√
c2 + 4βiD

2D
, i = 1, 2.

For µ ∈ (0,min{−λ11, λ12,−λ21, λ22}), define Bµ(R,R2) = {Φ ∈ C(R,R2) :
|Φ|µ < ∞}, where |Φ|µ = supt∈R e−µ|t||Φ(t)|R2 . Then (Bµ(R,R2), | · |µ) is a Banach
space.

By Lemma 3.1 and the definitions of H and F , the following properties of H
and F are obvious.

Lemma 3.2. For β1 > d and β2 > βM2 + d+ γ, we have

H1(ϕ2, φ2(0), φ1(−τ))(t) 6 H1(ϕ1, φ1(0), φ2(−τ))(t),

F1(ϕ2, φ2(0), φ1(−τ))(t) 6 F1(ϕ1, φ1(0), φ2(−τ))(t),

H2(ϕ1, φ2)(t) 6 H2(ϕ2, φ1)(t), F2(ϕ1, φ2)(t) 6 F2(ϕ2, φ1)(t)

for ϕi, φi ∈ C([−τ, 0], R), i = 1, 2 with (0, 0) 6 (ϕ2, φ2)(t) 6 (ϕ1, φ1)(t) 6 (M1,M2).

Lemma 3.3. F is continuous with respect to the norm | · |µ in Bµ(R,R2).

Proof. Letting Φ = (ϕ1, φ1),Ψ = (ϕ2, φ2), we have

|H1[Φ](t)−H1[Ψ](t)|e−µ|t|

6|f1(ϕ1, φ1)(t)− f1(ϕ2, φ2)(t)|e−µ|t| + β1|ϕ1(t)− ϕ2(t)|e−µ|t|

6(γ|φ1(t)− φ2(t)|+ d|ϕ1(t)− ϕ2(t)|+ γe−dτ |φ1(t− cτ)− φ2(t− cτ)|)e−µ|t|

+ β1|Φ−Ψ|µ
6B1|Φ−Ψ|µ,

where B1 := γ + d+ γe−dτecµτ + β1. Then for t > 0, we obtain

|F1[Φ](t)− F1[Ψ](t)|e−µ|t|

6 e−µt

D(λ12 − λ11)

[∫ t

−∞
eλ11(t−s) +

∫ +∞

t

eλ12(t−s)

]
|H1(ϕ1, φ1)(s)−H1(ϕ2, φ2)(s)|ds

6 B1

D(λ12 − λ11)

[
2µ

λ2
11 − µ2

e(λ11−µ)t +
λ12 − λ11

(µ− λ11)(λ12 − µ)

]
|Φ−Ψ|µ

6 B1

D(λ12 − λ11)

[
2µ

λ2
11 − µ2

+
λ12 − λ11

(µ− λ11)(λ12 − µ)

]
|Φ−Ψ|µ.

Similarly, for t < 0, we have

|F1[Φ](t)− F1[Ψ](t)|e−µ|t|

6 B1

D(λ12 − λ11)

[
2µ

λ2
11 − µ2

− λ12 − λ11

(µ+ λ11)(λ12 + µ)

]
|Φ−Ψ|µ,

which implies that F1 is continuous. By a similar argument as above, we can also
prove that F2 is continuous. Then the proof is complete.
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Define a profile set Γ as follows:

Γ((ϕ, φ), (ϕ, φ)) = {(ϕ, φ) ∈ C(R,R2)|(ϕ, φ)(t) 6 (ϕ, φ)(t) 6 (ϕ, φ)(t) for t ∈ R}.

Then we have the following results.

Lemma 3.4. F (Γ) ⊂ Γ, if the following assumption holds:

(C1) Φ
′
(t+) 6 Φ

′
(t−), Φ′(t+) > Φ′(t−), t ∈ R.

Proof. From Lemma 3.2, we have that

F1(ϕ, φ(0), φ(−τ))(t) 6 F1(ϕ, φ(0), φ(−τ))(t) 6 F1(ϕ, φ(0), φ(−τ))(t),

F2(ϕ, φ)(t) 6 F2(ϕ, φ)(t) 6 F2(ϕ, φ)(t)

for any (ϕ, φ) ∈ Γ. Then we only need to prove that

F1(ϕ, φ(0), φ(−τ))(t) > ϕ(t), F1(ϕ, φ(0), φ(−τ))(t) 6 ϕ(t),

F2(ϕ, φ)(t) > φ(t), F2(ϕ, φ)(t) 6 φ(t).
(3.6)

Noting that for any t ∈ R \ S, there exists a Ti ∈ S such that t ∈ (Ti−1, Ti), then
by the definitions of F and upper-lower solutions, we have

F1(ϕ, φ(0), φ(−τ))(t)

=
1

D(λ12 − λ11)

[∫ t

−∞
eλ11(t−s) +

∫ +∞

t

eλ12(t−s)

]
H1(ϕ, φ(0), φ(−τ))(s)ds

6 1

D(λ12 − λ11)

[∫ t

−∞
eλ11(t−s) +

∫ +∞

t

eλ12(t−s)

]
(β1ϕ+ cϕ

′ −Dϕ
′′
)(s)ds

=ϕ(t) +
1

λ12 − λ11

i−1∑
j=1

ϕ
′
(s)|Tj+

Tj− +
k∑

j=i

ϕ
′
(s)|Tj+

Tj−


6ϕ(t),

if (C1) holds, where Ti−1 < Ti, i = 1, 2, · · · , k+1 and T0 = −∞, Tk+1 = ∞. In view
of the continuity of F1 and ϕ(t), we have that F1(ϕ, φ(0), φ(−τ))(t) > ϕ(t) for all
t ∈ R.

By a similar argument, we can obtain that (3.6) holds for t ∈ R. The proof is
complete.

Lemma 3.5. F : Γ → Γ, is compact.

The proof of Lemma 3.5 is similar to that in [4], we therefore omit it here.

From Lemmas 3.1 and 3.5, we see that the existence of traveling wave solutions
for system (2.1) follows from the existence of a pair of upper and lower solutions
(ϕ, φ) and (ϕ, φ) of (3.3) satisfying (C1) and the following conditions:

(C2) (0, 0) 6 (ϕ(t), φ(t)) 6 (ϕ(t), φ(t)) 6 (M1,M2), t ∈ R.

(C3) limt→−∞(ϕ(t), φ(t)) = (0, 0), limt→+∞(ϕ(t), φ(t)) = (k1, k2).
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Now, to construct the upper-lower solutions, consider the following two functions:

∆1(λ, c) :=Dλ2 − cλ+
γl2k2
l1k1

− d,

∆2(λ, c) :=Dλ2 − cλ+ β − d− γ + γe−dτe−λcτ ,

where l1, l2 > 0 satisfy ∆1(0, c) > ∆2(0, c).

Lemma 3.6. There exists ci > 0 (i = 1, 2) such that the following conclusions hold.

(i) For any given c > ci,∆i(λ, c) = 0 has two distinct positive roots λ2i−1(c) <
λ2i(c), (i = 1, 2), and

∆i(λ, c)


> 0, 0 < λ < λ2i−1(c),

< 0, λ2i−1(c) < λ < λ2i(c),

> 0, λ > λ2i(c).

(ii) If c < ci, then ∆i(λ, c) = 0 has no real roots (i = 1, 2).

Proof. By direct calculations, we have

∆2(0, c) = β − d− γ + γe−dτ > 0, for all c > 0,

∆2(λ, 0) = Dλ2 + β − d− γ + γe−dτ > 0, for all λ > 0,

∂∆2(λ, c)

∂c
= −λ− λτγe−dτe−λcτ < 0, for all λ > 0,

∂2∆2(λ, c)

∂λ2
= 2D + c2τ2γe−dτe−λcτ > 0, for all λ > 0,

∆2(∞, c) = ∞, for all c > 0.

In view of the above observations on function ∆2(λ, c), the conclusion is true for
i = 2 . Similarly, one can show the other conclusions. The proof is complete.

Denoting c∗ = max{c1, c2}, fixing c > c∗, and noting that λ3 < λ1 < λ2 < λ4

from ∆1(0, c) > ∆2(0, c), we can fix η1, η2 such that

η1 ∈ (1,min{λ2

λ1
,
2λ3

λ1
}), η2 ∈ (

η1λ1

λ3
,min{λ4

λ3
, 2}). (3.7)

Furthermore, we have a result as follows.

Lemma 3.7. If R0 > 1, d > γ + γe−dτ hold, there exist εi > 0 (i = 1, 2, 3, 4) such
that

γε2 − dε1 + γe−dτε4 < 0, ε3 − ε2 < 0,

γε4 − dε3 + γe−dτε2 < 0, ε1 − ε4 < 0.
(3.8)

Proof. For ε2 > 0, we can find ε3, ε4, ε1 > 0 and α1, α2, α3 > 0 such that

ε3 = ε2 − α1, γε4 = dε3 − γe−dτε2 − α2, dε1 = γε2 + γe−dτε4 + α3. (3.9)

Then by a direct calculation, the following equation could be obtained from (3.9),

ε1 − ε4 =
γ2 − (d− γe−dτ )2

γd
ε2 +

(d− γe−dτ )(dα1 + α2) + γα3

γd
. (3.10)
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Since d > γ+ γe−dτ is equivalent to d− γe−dτ > 0 and γ2 − (d− γe−dτ )2 < 0, then
by choosing αi (i = 1, 2, 3) sufficiently small, we can obtain ε1 − ε4 < 0. The proof
is complete.

Define continuous functions Φ(t) = (ϕ1(t), φ1(t)) and Φ(t) = (ϕ2(t), φ2(t)) as
follows:

ϕ1(t) =

{
l1k1e

λ1t, t 6 t1,

k1 + ε1e
−λt, t > t1,

φ1(t) =

{
l2k2e

λ4t, t 6 t2,

k2 + ε2e
−λt, t > t2,

ϕ2(t) =

{
l1k2(e

λ1t −Meη1λ1t), t 6 t3,

k1 − ε3e
−λt, t > t3,

φ2(t) =

{
l2k2(e

λ3t −Meη2λ3t), t 6 t4,

k2 − ε4e
−λt, t > t4,

where ηi (i = 1, 2) is defined as in (3.7), εi (i = 1, 2, 3, 4) is defined as in (3.8),
M > 1 is a large enough constant and λ > 0 is a small constant. We can see that
Φ(t) and Φ(t) satisfy the conditions (C1), (C2) and (C3).

Lemma 3.8. Assume that R0 > 1, d > γ + γe−dτ , and M is large enough. Then
(ϕ1(t), φ1(t)) and (ϕ2(t), φ2(t)) are a pair of upper-lower solutions of (3.3).

Proof. Denote

p1(t) =Dϕ′′
1(t)− cϕ′

1(t) + γφ1(t)− dϕ1(t)− γe−dτφ2(t− cτ),

p2(t) =Dφ′′
1(t)− cφ′

1(t) + β(1− ϕ2(t)− φ1(t))φ1(t)− (d+ γ)φ1(t)

+ γe−dτφ1(t− cτ),

q1(t) =Dϕ′′
2(t)− cϕ′

2(t) + γφ2(t)− dϕ2(t)− γe−dτφ1(t− cτ),

q2(t) =Dφ′′
2(t)− cφ′

2(t) + β(1− ϕ1(t)− φ2(t))φ2(t)− (d+ γ)φ2(t)

+ γe−dτφ2(t− cτ).

If t 6 t1, ϕ1(t) = l1k1(e
λ1t, φ1(t) 6 l2k2e

λ4t, then

p1(t) 6 l1k1e
λ1t[Dλ2

1 − cλ1 + γl2k2e
(λ4−λ1)t/(l1k1)− d]

< k1e
λ1t∆1(λ1, c) = 0.

If t > t1, ϕ1(t) = k1 + ε1e
−λt, φ1(t) 6 k2 + ε2e

−λt. It follows that

p1(t) 6 e−λt(Dε1λ
2 + cε1λ+ γε2 − dε1 + γε4e

−dτeλcτ ) =: P1(λ).

Noting that P1(0) = γε2 − dε1 + γε4e
−dτ < 0, there exists a λ∗

1 > 0 such that
p1(t) 6 P1(λ) < 0 for λ ∈ (0, λ∗

1).
If t 6 t2, φ1(t) = l2k2e

λ4t, φ1(t− cτ) = l2k2e
λ4(t−cτ), then

p2(t) = l2k2e
λ4t[Dλ2

4 − cλ4 + β(1− ϕ2(t)− k2e
λ4t)− d− γ + γe−dτe−λ4cτ ]

< l2k2e
λ4t∆2(λ4, c) = 0.

If t > t2, ϕ2(t) > k1− ε3e
−λt, φ1(t) = k2+ ε2e

−λt, φ1(t− cτ) = k2+ ε2e
−λ(t−cτ),

we obtain that

p2(t) 6ε2e
−λt[Dλ2 + cλ+ βk2(ε3 − ε2)/ε2 + γe−dτ (eλcτ − 1)] := P2(λ).

Since P2(0) = βk2(ε3 − ε2) < 0, there exists a λ∗
2 > 0 such that p2(t) < 0 for all

λ ∈ (0, λ∗
2).



Stability and traveling waves 317

If t 6 t3, ϕ2(t) = l1k1(e
λ1t − Meη1λ1t), φ2(t) > l2k2(e

λ3t − Meη2λ3t), φ1(t) 6
l2k2e

λ4(t−cτ), then from (3.7) we get

q1(t) >l1k1e
λ1t[Dλ2

1 − cλ1 + γl2k2e
(λ3−λ1)t/(l1k1)− d]− l2k2γe

−dτeλ4(t−cτ)

− l1Mk1e
η1λ1t[Dη21λ

2
1 − cη1λ1 + γl2k2e

(η2λ3−η1λ1)t/(l1k1)− d]

>−Ml1k1e
η1λ1t∆1(η1λ1, c)− l2k2γe

−dτ > 0,

for M large enough.
If t > t3, ϕ2(t) = k1−ε3e

−λt, φ2(t) > k2−ε4e
−λt, φ1(t−cτ) 6 k2+ε2e

−λt, then

q1(t) > −ε3e
−λt(Dλ2 + cλ+ γε4/ε3 − d+ γe−dτε2/ε3) := P3(λ).

Since P3(0) = dε3 − γε4 − γe−dτε2 > 0, there exists a λ∗
3 > 0 such that q1(t) > 0

for all λ ∈ (0, λ∗
3).

If t 6 t4, φ2(t) = l2k2(e
λ3t−Meη2λ3t), φ2(t−cτ) = l2k2(e

λ3(t−cτ)−Meη2λ3(t−cτ)),
ϕ1(t) 6 l1k1e

λ1t, then from (3.7) we get

q2(t) >l2k2e
λ3t∆2(λ3, c)− l2k2βe

λ3t(l1k1e
λ1t + l2k2e

λ3t)− l2Mk2e
η2λ3t∆2(η2λ3, c)

>0

for M large enough.
If t > t4, ϕ1(t) 6 k1+ ε1e

−λt, φ2(t) = k2− ε4e
−λt, φ2(t− cτ) > k2− ε4e

−λ(t−cτ).
It then follows that

q2(t) >− ε4e
−λt[Dλ2 + cλ+ β(1− k2/ε4)(ε4 − ε1) + γe−dτ (eλcτ − 1)] := P4(λ).

Since P4(0) = β(k2 − ε4)(ε4 − ε1) < 0, there exists a λ∗
4 > 0 such that q2(t) > 0 for

all λ ∈ (0, λ∗
4).

Taking λ ∈ (0,min{λ∗
i , i = 1, 2, 3, 4}), we see that (ϕ1(t), φ1(t)) and (ϕ2(t), φ2(t))

are a pair of upper-lower solutions of (3.3).
Combining Lemmas 3.1-3.8 with Schauder’s fixed point theorem, we know that

there exists a fixed point (ϕ∗(t), φ∗(t)) of F in Γ((ϕ, φ), (ϕ, φ)), which gives a solu-
tion of (3.3). Furthermore, from (C3), we obtain that

lim
t→−∞

(ϕ∗(t), φ∗(t)) = (0, 0), lim
t→+∞

(ϕ∗(t), φ∗(t)) = (k1, k2),

which indicates that the fixed point satisfies the asymptotic boundary conditions
(3.5). Therefore, there exists a traveling wave solution for system (3.2) connecting
the steady state (0, 0) and (k1, k2). Accordingly, we have the following result.

Theorem 3.1. Suppose d1 = d2,R0 > 1, and d > γ+γe−dτ , then for every c > c∗,
system (1.3) has a traveling wave solution with speed c connecting the disease-free
steady state E0 and the endemic steady state E∗.

4. Numerical simulations

In this section, focusing on the traveling wave solutions of system (2.1), we perform
some numerical simulations.

In system (1.3), we fix d = 0.1, β = 0.6, γ = 0.5, d1 = d2 = d3 = 0.01 and
τ = 0.75, then system (1.3) with above coefficients has a disease-free steady state
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E0(1, 0, 0) and an endemic steady state E∗(0.2269, 0.5679, 0.2052). For convenience,
we truncate the spatial domain R by [−10, 10]. By calculation, we obtain the basic
reproductive number R0 = 4.4076 > 1. To illustrate the existence of traveling wave
solutions, we choose initial conditions:

(S(x, t), I(x, t)) =

{
E0, − 10 6 x < 0, − τ 6 t 6 0,

E∗, 0 6 x 6 10, − τ 6 t 6 0.
(4.1)

The numerical simulations shown in Figure 1 indicate that system (1.3) has a trav-
eling wave solution connecting E0 and E∗.

Now we address the effects of parameters on the dynamics of system (1.3). We
first investigate the impact of the diffusion rates. To this end, we fix d = 0.1, β =
0.6, γ = 0.5, τ = 0.75, and let the diffusivity vary. By contrasting Fig. 1 and Fig.
2, we can see that the traveling wave in Fig. 2(b) is much fast than that in Fig.
1, but the wave speeds in Fig. 2(a) and (c) are just the same as that in Fig. 1,
which indicates that the diffusion rate of infective can advance the time to arrive
at the infection steady state, but the diffusion rates of susceptible individuals and
recovered individuals can not. Even so, there is an obvious difference between the
wave profiles in Fig. 2(a) and the others: the former has a hump in wave profile
for I, i.e., the diffusion rate of susceptible individuals could lead to non-monotone
traveling waves. In biological meaning, large diffusion of susceptible individuals
may enhance the accumulative effect of infection.

Changing the parameter from τ = 0.75 to 2, we find monotone traveling front
profiles, lower infection load and slower wave speed for system (1.3) in Fig. 3(a),
by contrasting with Fig. 1. In biological meaning, long average relapse period
could lead to low and slow infection, but it can enhance the accumulative effect of
infection.

To investigate the impact of transmission coefficient, we increase change the
parameter from β = 0.6 to 0.8. By contrasting Fig. 1 with Fig. 3(b), we see that
large transmission coefficient could lead to fast infection.

5. Conclusions

In this paper, we formulated an epidemic model with relapse, time delay and spatial
diffusion. The dynamics of problem (1.3)-(1.4) was addressed. It was shown that
the basic reproductive number of system (1.3) is given by R0 = β/(d+ γ − γe−dτ ),
which describes the average number of newly infected individuals at the beginning
of the infectious process. We have shown when the average number of newly infect-
ed individuals is less than unity, i.e., R0 < 1, system (1.3) has a unique disease-free
steady state E0(1, 0, 0), which is asymptotically stable; when the average number
of newly infected individuals is greater than unity, i.e., R0 > 1, system (1.3) ad-
mits two steady states, E0 and E∗(S∗, I∗, R∗). In this case, the endemic steady
state E∗ is always stable, while the disease-free steady state E0 is unstable. Clear-
ly, the spatial diffusion cannot destabilize the spatially homogenous steady state.
Then by using the technique of upper and lower solutions and Schauder’s fixed
point theorem, we derived the existence of a traveling wave solution connecting the
disease-free steady state and the endemic steady state. Furthermore, we gave some
numeric simulations to illustrate the main results, and combining with numeric sim-
ulations, we discussed the effects of some parameters on the dynamics of system
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Figure 1. The traveling wave observed in system (1.3) with parameters:d = 0.1, β =
0.6, γ = 0.5, d1 = d2 = d3 = 0.01, τ = 0.75, and initial conditions (4.1).
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Figure 2. The traveling wave observed in system (1.3) with parameters: d = 0.1, β =
0.6, γ = 0.5, τ = 0.75, d1 = 0.02, d2 = d3 = 0.01 in (a); d1 = d3 = 0.01, d2 = 0.02 in
(b) and d1 = d2 = 0.01, d3 = 0.02 in (c).

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

I(
x,

t)

(a)

t=60

t=20

t=40

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

I(
x,

t)

(b)

t=20

t=40

t=60

Figure 3. The traveling wave observed in system (1.3) with parameters: d = 0.1, γ =
0.5, d1 = d2 = d3 = 0.01, β = 0.6, τ = 2 in (a); β = 0.8, τ = 0.75 in (b).
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(1.3). From the discussion in Section 4, we could conclude that the traveling wave
speed is increasing in the diffusion rates of infective individuals and the transmission
coefficient, but decreasing in the average relapse period of the disease. In addition,
large diffusion rate of susceptible individuals or long average relapse period may
lead to non-monotone traveling waves.
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