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Abstract: This paper gives a unified approach to Hsu’s two classes of extended GSN
pairs in the setting of Hsu-Riordan partial monoid which is a generalization of Shapiro’s
Riordan group, and moreover Hsu-Wang transfer theorem, Brown-Sprugnoli transfer
formula and generalized Brown transfer lenuna which display some transfer nietlhiods of
different kinds of Hsu-Riordan arrays and identities respectively.
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1. Hsu-Riordan partial monoid

In this paper, we assume that Y > >0, = 37737 |, so that all what follows are
formalities.

Definition 1.1 For four complex functions p(n,t),q(n,t),d(t), and h(t), and an infinite
matrix A = (A(n,k)), if

> <)

d(t)p(k, k(1)) = A(n, k)g(n,1) (1.1)

n=0

holds formally fork = 0,1, 2, -+, then we call A a Hsu-Riordan array, or HR-array in short,
denoted by (p(n,t),q(n,t);d(t), h(t)), or(p, q; d, h)for short, viz., (p, q;d, h) := (A(n, k)).

Remark The original idea of {1.1) can be found in Hsu’s masterpiece “Theory and appli-
cation of generalized Stirling number pairs”. This is the reason why we refer to the above
matrix (A(n,k)) =: (p,q;d, h) as Hsu-Riordan array.
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If f(t) := Y p2o frp(k,t), since

i i (m k) fi)g i Jed(®)p(k, b)) = dO)f(R() (by(11),  (12)

we obtain -
3" A(m, k) fe = [a(m, () F(A(2)), (1.3)

k=0

where [g(n,t)]g(t) denotes g, with g(t) = ¥, gng(n,t). We call (1.2) Bruno-type formula
which is a pattern of identity.

If we regard 3", fip(k,t) as the generating function of { fi}, with respect to {p(k,t)}«,
then (1.2) tells us that the generating function of the product of A and column vector
(for f1,- )T with respect to {g(n,t)}, is d(t)f(h(t)). Denote again this generating funtion
by (p,q;d, h) * [f|p] in which [f|p] denotes f with f(t) = 3, fip(k,t). Then

(p,q;d, k) * [f|p] = [df (h)lq]. (1.4)
For two HR-arrays (p,q;d,h) and (g,7; f,g), and any sequence {Fj}, since

(¢,7: f,9)(p,a:d, B) * [Flp] = (¢, f, 9) * [dF(R)lq] = [fd(g) F(R(g))I7],
we have by (1.4) that (g,7; f,9)(p,¢;d,h) = (p,7; fd(g), h(g)). If we define

(q,?‘)(p, ‘I) = (P,"')» (1'5)
(f,9)(d,h) := (fd(g),h(g)), (1.6)

then
(g,7: f,9)(p, g d, k) = ((9,7)(p, 9); (£, 9)(d, h)). (1.7)

Definition 1.2 A partial monoid is a triple (M,p,1) in which M is a non-vacuous set, p

is an associative partial binary product in M (viz., we admit that p(a,b) is meanless for

some a,b € M), and 1 is an element of M such that p(1,a) = a = p(a,1) foralla € M.
Denote

H := {(p,q;d,h)|(p,q;d,h) is a HR — array},
M :={(p,q)|3(d,h)s.t.(p,q;d, h) is a HR — array},
G := {(d,h)|3(p,q)s-t.(p,q;d,h) is a HR — array}.

Obviously, G is a monoid (for monoid, see [12]) with (1.6) and the identity element (1,t),
M is a partial monoid with (1.5) and the identity element (p,p) for all p (more precisely,
the quotient set M/ ~ becomes a partial monoid with (¢,7) (p,¢) = (p,r) and the identity
element (p,p), where (p,p) = {(¢,q)! for any ¢},(p,q) = {(p,¢)}, if p# ¢,) and H is a
partial monoid with (1.7) and the identity element (p,p;1,t), unit matrix.We refer to H
as a Hsu-Riordan partial monoid, and regard roughly H as the direct product of M and
G in the natural way, i.e.,

H=MgG. (1.8)
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Denote

H,:={(p,p;d,h)l(p.p;d,h) € H},
HE = {(p,p;d, h)|(p,p;d, k) € H and d,h are fps with o(d) = 0,0(h) = 1},

where “fps” represents* formal power series” and
. t
O(f(t)) = n’llll{kl(—f-t(r))t:() # 0, k= 0,1,2, N }

It is easy to understand that the following holds.

Theorem 1.3 H, is a monoid, and Hj is an isomorphic image of Riordan group[““m].
When p(n,t) is a fps with o(p(n,t)) = n,HJ is just a relative Riordan group, and

accordingly, the element of HJ is a relative Riordan array in [18].

Definition 1.4 If two HR-arrays (A(n,k)) = (p,¢;d,h) and (B(n,k)) = (p1,4q1;d1, k1)
are inverses of each other, then we call (A(n,k), B(n,k)) a Hsu-Stirling number pair, or
HSN pair for short.

For HSN pair (A(n,k), B(n,k)), if d and h are fps, then

(B(n,k)) = (g,p; 47 (R), R),

where h represents the compositional inverse of A. If, furthermore, {p(n, t)}, and {¢(n,t)}n
are two normal basic sets of polynomials ( see [7]), and d(¢) = 1, then the HSN pair is just
Hsu’s first class of extended GSN pair in [7].

If(p,p;d,h) € HJ, then HSN pair (A(n, k), B(n, k)) becomes a HRSN pair [18]; because
Hsu'’s second class of extended GSN pair in (7] is also a HRSN pair, so Hsu’s second class
of extended GSN pair is a HSN pair.

Summarizing above discussion, we obtain the conclusion that the Hsu-Riordan partial
monoid is a proper setting for unifying Hsu’s two classes of extended GSN pairs and some
related results such as [6-9], which illustrates the principle of the intrinsic unity of one’s
thoughts.

2. Hsu-Wang transfer theorem
For given two fps d(t) and h(t), define

d(t)h(t)m =: Z fi,mtiy

=0
> .
h(t)"l = Zgi,mtta
i=0
/‘(u)(p') = ’\lfi‘u(p)»‘Y(ﬂ)(Pl) = Algi.ﬂ(pﬁ

tey(n) = [ e @)1 (0) = T s (@),
(*) (=)
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where (*) represents the (p'|n and p'*! Jn), p is a prime, a and B are arithmetic functions.
Then we have the following theorem.

Theorem 2.1 (g(4) * 7(5))(n) = K(asp)(n), Where p(,) * v(g) represents the Dirichlet
product (see [13]).

Proof For any prime p, we have

(1) * 1)) = X ey D100y (55 Zﬂ P )1 (P° )

dlp*
=D A i X Gemipp) = A° Z fiap)9e-iBw)
1=0 =0

=X fe(atB)(p) = Platp)(P°)-

It is easy to see from the definition of () and yg) that they are multiplicative functions.
Therefore their Dirichlet product p(,) * () is also mutiplicative, and hence

() * 7(8)) (1) = fasp)(n)

for any natural number n. This completes the proof.
If we define -

then Theorem 2.1 tells us that f(a)g(ﬂ) = f(a+,6), and so f(n) = f(1)g(1)* ! forn > 1.
(A(n,m)) = (K(m41)(n)) is a HR-array with the row vector of the generating functions of
the columns of (A(n,m)) with respect to {n"t},

(F(1), £(1)g(1), F(1)g(1)%,---).

Hence, Theorem 2.1 implies a general method for constructing new HR-array from the
ordinary HR-arrays (fim) and (gim).
When d(t) = 1, h(t) = 332, fit', we obtain

®

, 9(B):

Corollary 2.2 If define
(Z fiti)m = E fi,mtiy
=0 1=0

l‘(a)(I’l) = ’\ifi,a(p)y
with fo = foo =1, fio = 0(¢ > 1), and moreover

B (n H P (P

and

1
o)) = [~] = dna,
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where a is an arithmetic function, (x) represents (p‘|n and p**! fn), and §,.1 denotes the
Kronecker-delta, then (ju(,) * p(3)) (1) = fasp)(n)-

Corollary 2.3 F(Tl) = Edln /‘L((I)(%)G(d) — G(Tl) = Zdln p’(—a)(%)F(d) with [l,(a)(n)
defined in Corollary 2.2.
In particular, since f;, =

1 (l+kz
1+kz k

f B m m+kz
kam = + kz k
on the basis of

~_a(a+bk ¢ ctbn—k)\  atc fatctibn
,;,ku( k )m( n—k )—m( n )(see[S],[w])

) in Corollary 2.2 implies

and

f(@)f(y) = flz +y) = f(=) = F(1),

fo = 1 1+ kz
k_1+kz k

and A = -1 in Corollary 2.2 and 2.3, that the two corollaries become Theorems 2 and 3
in [10], respectively.

We refer to Theorem 2.1 as a Hsu-Wang transfer theorem to show the source of the
theorem.

we know by taking

3. Generalized Brown transfer lemma

Theorem 3.1 For given fps f(z) and h(z) with o(h(z)) = 0, define

h(z)* =: 3 (=
o) =t 2 Cunly)
Then for sequences {®,},, and {¥,},,
n ~xi z o
‘I’n = E Cn—k,kék == Z ‘I’n(~——)" = f(:c) Z <I>,,Lr”.
k=0 n=0 h(il:) n=>0

If we take f(z) = (1 + z)*, h(z) = (1 + z)?, then

o= a+ kp a+ (k+n)s
ok = a+ (k+n)g n

by the well-known Lagrange inversion theorem (see {4]). For given sequence{A}, let

_ a _ n a+fin
¢ = ———"+ﬂk/\k,rn =Y il e ) Ak, then

n a
‘I’n - Cn—- : ',é e — T 5 Ty,
Z kkPL a+ﬁnr

k=0
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and, Theorem 3.1 becomes

Corollary 3.2

rn=z<“n&k")&:»2 Sl = 04

k=0

(> <)

This is just the (3) of the lemma in [1]. We call Theorem 3.1 the generalized Brown

transfer lemma.

4. Brown-Sprugnoli transfer formula

If p,q,d,h are fps, then we call (p,¢;d,h) a fps-type HR-array. In this section, we
consider only the case in which o(p(n,t)) = o(g(n,t)) = n,o(d) = 0,0(h) = 1, and denote

p(n,t) and g(n,t) by p,(t) and g, (t) respectively.

Let
(t)pr(h(2) Z A(n, kg, (t
n>k
d(t)Pi(h(t)) = Y B(n, k)Qn(t),
n>k
and

where (p(t)) denotes the row vector (py(t),pi(t),p2(t), ). Since

(d(t)p(h(t))) = (g(8))A4,
(d(t)P(h(t))) = (Q(¢))B,
we have
(d)p(h(2)) = (d)PEENN (by (4.1
= (Q(t))BN (by (4.4));
(d(t)p(R(t))) = (q(t))A (by (4.3))
= (Q(t))MA (by (4.2)),
and hence

BN = MA (by (4.5) and (4.6)),

or

MAN~! = B.

Theorem 4.1 For given two HR-arrays A = (p,q;d,h) and B =

and (¢) = (Q)M, then MA = BN or MAN! = B.

))

(P,Q;d,h), if (p) =

(4.1)
(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
P)N

Theorem 4.1 tells us a method of transforming a fps-type HR-array to another one.
If we take p = ¢ and P,(t) = Q,.(t) = t*, then M = N and Theorem 4.1 becomes
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Corollary 4.2 If(p(t)) = (t)M, then

M(p,p;d, )M~ = (t,t;d, h).

In particular, if pi(t) = 2—:,ck #0fork=0,1,2,---, then M = diag(cy !, et s, ).
If (p,p; d, h) = (hij), then
M(h; )Mt = ("'Jh ) (4.9)

is a Riordan array. This is an answer to Shapiro’s problem in {14] of developing a Riordan
array-type theory with respect to generating functions of the form A(z) = Y .~ “—lclf—" for
various sequences ¢,.

Specially, if we take ¢, = k!, then ( h,J) is a Riordan array, where, h;; satisfies

h(t)) X, F
d(t) ('I) = Zh"j'—l‘
J: i=0 &
For example, (S(n, k)) = (&, 5;1,ef - 1), s0
k!
(5 S(n,k)) = (¢",t"1,€" - 1). (4.10)
n!

where S(n, k) represents the Stirling numbers of the second kind (see [4]). Thus

k! n! ny _ylef—
Y S(nk)yt = Y S(n,k) 'kly}” nt{t"]evts —)
1<k<n 0<k<n

n tn r rt

—e y[t v = —UZ
r>0
_e—uz !y

r>1

This is just the result (4.2.16), a Dobinski-type formula, in [17].

In view of the fact that J.W.Brown gave (4.9) in the setting of the connection sequences
(see [2,3]) and R.Sprugnoli used (4.10) in [15], we call Theorem 4.1 Brown-Sprugnoli trans-
fer formula.

Acknowledgement The author wishes to thank professor L.C.Hsu for valuable conver-
sations.
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Hsu-Riordan % /partial monoid

B K A
(e Dol K2 R BOE2PE,  dbat 100022)

¥ FE ACEHEXT Shapiro Ay Riordan BEEATTHEIT, £ T Hsu-Riordan partial
monoid IR, REEMHERN, MIRFIGEEN AT BE X Stirling $BHET T
S—4b¥E; @7 Hsu-Wang 554525, Brown-Sprugnoli AR, LAXS” X Brown §%
HE1E — BHRRT —HARFE A Hsu-Riordan WE2 MIFEHRAIIL, B EKER
EESW

X@#i5): Riordan [ / #& -Riordan Ff; i monoid; XA REL; stirling %(; FRAX;
3

— 260 —



