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1. Introduction

In 1976, Caristi[1] put forward Caristi’s fixed point theorem:

Theorem A (Caristi’s Fixed Point Theorem) Assume that X is a complete metric space,

g : X → X is an arbitrary mapping and ϕ : X → R+ is a lower semi-continuous functional. If

d(x, g(x)) ≤ ϕ(x) − ϕ(g(x)), ∀x ∈ X,

then g has a fixed point, i.e., there exists x0 ∈ X such that g(x0) = x0.

In 1977, Downing and Kirk[2] generalized Theorem A:

Theorem B Let X and Y be complete metric spaces and g : X → X an arbitrary mapping, and

f : X → Y a closed mapping (thus for {xn} ⊂ X the conditions xn → x and f(xn) → y imply

f(x) = y). If there exist a lower semi-continuous functional ϕ : f(X) → R+ and a constant c > 0

such that for each x ∈ X ,
{

d(x, g(x)) ≤ ϕ(f(x)) − ϕ(f(g(x))),
cd(f(x), f(g(x))) ≤ ϕ(f(x)) − ϕ(f(g(x))),

(0)

then g has a fixed point.

Note that it is needed in Theorem A and Theorem B that ϕ is bounded from below, and

this condition plays an important role in the proofs. The main results of this paper weaken the

condition essentially.
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In 1974, Ekeland[5] put forward a variational principle:

Theorem C (Ekeland Variational Principle) Let X be a complete metric space, and let ϕ :

X → R∪{+∞} be bounded from below, lower semi-continuous, and 6≡ +∞. If there exist ε > 0

and x ∈ X such that ϕ(x) ≤ inf
X
ϕ+ ε, then there exists y ∈ X such that

ϕ(y) ≤ ϕ(x); d(x, y) ≤ 1; ϕ(z) > ϕ(y) − εd(y, z), ∀z 6= y.

This variational principle had been applied to many fields, including control theory, optimal

theory, geometry in Banach spaces and big area analysis, etc[6,7].

In 1987, Shi[8] proved the equivalence of Theorem A and Theorem C. This makes us want

to generalize Theorem C to more general case naturally, and the generalized result is equivalent

to the generalized Caristi’s fixed point Theorem (Corollary 1 in this paper). We know that the

classical general principle on ordered sets[3] can deduce Theorem A. In this paper, we utilize the

generalized general principle on ordered sets[4] to give another proof of the main result in this

paper.

Lemma 1 (Generalized General Principle on Ordered Sets)[4] Assume thatX is a partial ordered

set and a Hausdorff topological space, which satisfies

(i) ∀x ∈ X , {y ∈ X |y ≥ x} is a sequential closed set;

(ii) if x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · , then {xn} has a convergent subsequence;

(iii) there exists ψ : X → R such that

x ∈ X, y ∈ X, x ≤ y, x 6= y ⇒ ψ(x) < ψ(y).

Then X has maximal element.

2. Main results

Theorem 1 Let X and Y be complete metric spaces and g : X → X an arbitrary mapping.

Suppose there exist a closed mapping f : X → Y , a lower semi-continuous functional ϕ : f(X) →

R, which is bounded from below on every bounded set, and constants c > 0, a < 0, −a < c and

x0 ∈ X such that

lim inf
d(x,x0)→+∞

ϕ(f(x))

d(x, x0)
> −1, (1)

lim inf
d(f(x),f(x0))→+∞

ϕ(f(x))

d(f(x), f(x0))
> a, (2)

and for each x ∈ X ,
{

d(x, g(x)) ≤ ϕ(f(x)) − ϕ(f(g(x))),
cd(f(x), f(g(x))) ≤ ϕ(f(x)) − ϕ(f(g(x))).

Then g has at least one fixed point.

Proof From (1)(2), it follows that M > 0, α1 > −1, 0 ≥ α2 > a, such that ϕ(f(x)) > α1d(x, x0)

when d(x, x0) ≥M , and ϕ(f(x)) > α2d(f(x), f(x0)) when d(f(x), f(x0)) ≥M . (We may assume
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that α1 ≤ 0, otherwise ϕ is bounded from below, then the conclusion is proved by Theorem B).

Since ϕ is bounded from below on every bounded set, there exists β1 ≥ 0 such that ϕ(f(x)) > −β1

when d(x, x0) ≤M , and ϕ(f(x)) > −β1 when d(f(x), f(x0)) ≤M . Then we have

ϕ(f(x)) > α1d(x, x0) − β1, ∀x ∈ X ;

and

ϕ(f(x)) > α2d(f(x), f(x0)) − β1, ∀x ∈ X.

Let γ1 = 1 + α1, γ2 = c+ α2, then γ1 > 0, γ2 > 0. For x, y ∈ X , define x ≤ y provided

{

γ1d(x, y) ≤ ϕ(f(x)) − α1d(x, x0) − [ϕ(f(y)) − α1d(y, x0)],
γ2d(f(x), f(y)) ≤ ϕ(f(x)) − α2d(f(x), f(x0)) − [ϕ(f(y)) − α2d(f(y), f(x0))].

We first prove “≤” defined above satisfies the three axioms of partial order. Indeed, (i) x ≤ x is

obviously; (ii) if x ≤ y, y ≤ z, then

γ1d(x, y) ≤ ϕ(f(x)) − α1d(x, x0) − [ϕ(f(y)) − α1d(y, x0)],

γ1d(y, z) ≤ ϕ(f(y)) − α1d(y, x0) − [ϕ(f(z)) − α1d(z, x0)];

and

γ2d(f(x), f(y)) ≤ ϕ(f(x)) − α2d(f(x), f(x0)) − [ϕ(f(y)) − α2d(f(y), f(x0))],

γ2d(f(y), f(z)) ≤ ϕ(f(y)) − α2d(f(y), f(x0)) − [ϕ(f(z)) − α2d(f(z), f(x0))].

From the above four inequalities, we have

γ1d(y, z) ≤ γ1d(x, y) + γ1d(y, z) ≤ ϕ(f(x)) − α1d(x, x0) − [ϕ(f(z)) − α1d(z, x0)],

and

γ2d(f(y), f(z)) ≤ γ2d(f(x), f(y)) + γ2d(f(y), f(z))
≤ ϕ(f(x)) − α2d(f(x), f(x0)) − [ϕ(f(z)) − α2d(f(z), f(x0))],

i.e., x ≤ z; (iii) if x ≤ y, y ≤ x, then as in the process of (ii), we have

γ1d(x, y) + γ1d(y, x) ≤ 0, γ2d(f(x), f(y)) + γ2d(f(y), f(x)) ≤ 0,

which yields x = y.

Suppose that M = {xα|α ∈ I} is a totally ordered set in X with xα ≤ xβ ⇔ α ≤ β. Let

ϕ1(f(x)) = ϕ(f(x)) − α1d(x, x0) and ϕ2(f(x)) = ϕ(f(x)) − α2d(f(x), f(x0)), then

{

γ1d(x, y) ≤ ϕ1(f(x)) − ϕ1(f(y)),
γ2d(f(x), f(y)) ≤ ϕ2(f(x)) − ϕ2(f(y)).

Hence

xα ≤ xβ ⇔

{

0 ≤ γ1d(xα, xβ) ≤ ϕ1(f(xα)) − ϕ1(f(xβ)),
0 ≤ γ2d(f(xα), f(xβ)) ≤ ϕ2(f(xα)) − ϕ2(f(xβ)).
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It is obvious that {ϕ1(f(xα))}α∈I and {ϕ2(f(xα))}α∈I are both monotone decreasing sequences.

In addition, ϕ1(f(x)) > −β1, ∀x ∈ X , and ϕ2(f(x)) > −β1, ∀x ∈ X . Then there exist t1, t2 ∈ R

such that ϕ1(f(xα)) → t1 and ϕ2(f(xα)) → t2. Hence ∀ε > 0, ∃α0 ∈ I , such that when α > α0,

t1 ≤ ϕ1(f(xα)) ≤ t1 + ε, t2 ≤ ϕ2(f(xα)) ≤ t2 + ε.

For β ≥ α ≥ α0,
{

γ1d(xα, xβ) ≤ ϕ1(f(xα)) − ϕ1(f(xβ)) ≤ ε,
γ2d(f(xα), f(xβ)) ≤ ϕ2(f(xα)) − ϕ2(f(xβ)) ≤ ε.

Thus {xα} is a Cauchy sequence in X and {f(xα)} is a Cauchy sequence in Y . By completeness

of X and Y , there exist x ∈ X and y ∈ Y , such that xα → x, f(xα) → y. Since f is a closed

mapping, f(x) = y. Note that ϕ is lower semi-continuous, we have

ϕ1(f(x)) = ϕ(f(x)) − α1d(x, x0) ≤ t1,

ϕ2(f(x)) = ϕ(f(x)) − α2d(f(x), f(x0)) ≤ t2.

Moreover, if α, β ∈ I with β ≥ α, then

{

γ1d(xα, xβ) ≤ ϕ1(f(xα)) − ϕ1(f(xβ)) ≤ ϕ1(f(xα)) − t1,
γ2d(f(xα), f(xβ)) ≤ ϕ2(f(xα)) − ϕ2(f(xβ)) ≤ ϕ2(f(xα)) − t2.

Taking limits with respect to β yields

{

γ1d(xα, x) ≤ ϕ1(f(xα)) − t1 ≤ ϕ1(f(xα)) − ϕ1(f(x)),
γ2d(f(xα), f(x) ≤ ϕ2(f(xα)) − t2 ≤ ϕ2(f(xα)) − ϕ2(f(x)).

Thus, xα ≤ x, ∀α ∈ I , i.e., x is an upper bound of M . We apply Zorn’s Lemma to obtain the

maximal element x∗ ∈ X , i.e., ∀x 6= x∗,

γ1d(x
∗, x) > ϕ(f(x∗)) − α1d(x

∗, x0) − [ϕ(f(x)) − α1d(x, x0)], (3)

or

γ2d(f(x∗), f(x)) > ϕ(f(x∗)) − α2d(f(x∗), f(x0)) − [ϕ(f(x)) − α2d(f(x), f(x0))]. (4)

From (3), we have

ϕ(f(x)) > ϕ(f(x∗)) − α1d(x
∗, x0) + α1d(x, x0) − γ1d(x

∗, x)
≥ ϕ(f(x∗)) + α1d(x

∗, x) − γ1d(x
∗, x)

= ϕ(f(x∗)) − d(x∗, x),

i.e.,

ϕ(f(x)) > ϕ(f(x∗)) − d(x∗, x), ∀x 6= x∗.

From (4), we have

ϕ(f(x)) > ϕ(f(x∗)) − α2d(f(x∗), f(x0)) + α2d(f(x), f(x0)) − γ2d(f(x∗), f(x))
≥ ϕ(f(x∗)) + α2d(f(x∗), f(x)) − γ2d(f(x∗), f(x))
= ϕ(f(x∗)) − cd(f(x∗), f(x)),
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i.e.,

ϕ(f(x)) > ϕ(f(x∗)) − cd(f(x∗), f(x)), ∀x 6= x∗.

If g has no fixed point, then g(x) 6= x, ∀x ∈ X , especially, g(x∗) 6= x∗, then

ϕ(f(g(x∗))) > ϕ(f(x∗)) − d(x∗, g(x∗)),

or

ϕ(f(g(x∗))) > ϕ(f(x∗)) − cd(f(x∗), f(g(x∗))).

The above two inequalities contradict the hypothesis, and hence g has at least one fixed point.

Remark 1 We claim that Theorem 1 generalizes Theorem A and Theorem B essentially. Indeed

if ϕ is bounded from below, we have

lim inf
d(x,x0)→+∞

ϕ(f(x))

d(x, x0)
≥ 0,

and

lim inf
d(f(x),f(x0))→+∞

ϕ(f(x))

d(f(x), f(x0))
≥ 0.

It is obvious that the two above inequations are stronger then (1) and (2) in Theorem 1 respec-

tively.

In Theorem 1, if X = Y and f is the identity mapping, we have the following conclusion.

Theorem 2 Let X be a complete metric space and g : X → X an arbitrary mapping. Suppose

that there exists a lower semi-continuous functional ϕ : X → R, which is bounded from below

on each bounded set, and x0 ∈ X such that

lim inf
d(x,x0)→+∞

ϕ(x)

d(x, x0)
> −1,

and

d(x, g(x)) ≤ ϕ(x) − ϕ(g(x)), ∀x ∈ X,

then there exists x∗ ∈ X such that g(x∗) = x∗.

Remark 2 If f in Theorem 1 is continuous, then Theorem 1 can be proved by Lemma 1.

Remark 3 If X is a finite dimensional space in Theorem 1 or Theorem 2, then we do not need

to assume that ϕ : X → R is bounded from below.

Corollary 1 In Theorem 2, if we enhance “> −1” in the first inequation as “≥ 0”, the conclusion

of Theorem 2 is still valid.

3. Applications

From [8], we know that Theorem A is equivalent to Theorem C, then from Theorem 2,

Theorem C can be generalized.
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Theorem 3 Let X be a complete metric space, and let ϕ : X → R ∪ +∞, 6≡ +∞, lower

semi-continuous, and bounded from below on each bounded set. If there exists x0 ∈ X such that

lim inf
d(x,x0)→+∞

ϕ(x)

d(x, x0)
≥ 0,

then ∀ε > 0, ϕ has ε−approximately minimal point, i.e., ∃x∗ ∈ X such that

ϕ(x) > ϕ(x∗) − εd(x, x∗), ∀x 6= x∗.

Proof We assume, by contradiction, that there is ε0 > 0 such that for all x ∈ X , there exists

yx ∈ X, yx 6= x, satisfying ϕ(yx) ≤ ϕ(x) − ε0d(yx, x). We define g(x) = yx, then g(x) 6= x, and

ϕ(g(x)) ≤ ϕ(x) − ε0d(g(x), x). So g : X → X has no fixed point. On the other hand, from

d(g(x), x) ≤ [ϕ(x) − ϕ(g(x))]/ε0, ∀x ∈ X,

and

lim inf
d(x,x0)→+∞

ϕ(x)

d(x, x0)
≥ 0,

we can see that ϕ/ε0 satisfies all the conditions of Corollary 1, then g has at least one fixed

point. It brings about a contradiction.

Remark 4 In Theorem 3, we can not enlarge “≥ 0” in the inequation as “> α” (where α < 0).

Indeed, let X = R, ϕ(x) = βx (where β < 0), then

lim inf
|x|→+∞

ϕ(x)

|x|
≥ β.

But for each x, y ∈ R, x > y, 0 < ε0 < −β, we have

ϕ(x) − ϕ(y) = β(x − y) < −ε0|x− y|,

i.e., ϕ has no ε0-approximately minimal point.

Theorem 4 Theorem 3 is equivalent to Corollary 1.

Proof Noting the proof of Theorem 3, we only need to prove Theorem 3⇒Corollary 1. Assume

that g has no fixed point, i.e., ∀x ∈ X , g(x) 6= x. From the hypothesis that ϕ satisfies the

conditions of Theorem 2, it follows that ∀ε > 0, ∃xε ∈ X such that

ϕ(w) > ϕ(xε) − εd(w, xε), ∀w 6= xε.

In particular, let ε = 1, then

ϕ(w) > ϕ(x1) − d(w, x1), ∀w 6= x1.

Since g(x1) 6= x1, we have

ϕ(g(x1)) > ϕ(x1) − d(g(x1), x1),



No.2 SUN Jin-lin, et al: A Generalization of Caristi’s theorem 205

i.e., d(g(x1), x1) > ϕ(x1) − ϕ(g(x1)), which contradicts the hypothesis that d(x, g(x)) ≤ ϕ(x) −

ϕ(g(x)), ∀x ∈ X . Hence g has at least one fixed point.

Remark 5 Theorem 3 develops classical Ekeland variational principle. For example, f(x) =

x
1

3 , x ∈ R, satisfies all the conditions of Theorem 3, however it can not be solved by classical

Ekeland variational principle.

Corollary 2 Assume that X is a reflexive Banach space, and that ϕ : X → R ∪ +∞, 6≡ +∞,

is weakly lower semi-continuous, and satisfies

lim inf
||x||→∞

ϕ(x)

||x||
≥ 0.

Then ∀ε > 0, ϕ has ε−approximately minimal point.

Proof Since X is reflexive, we have that ∀M > 0, B = {x ∈ X |‖x‖ ≤M } is weakly sequential

compact. Note that B is convex and closed, then B is a weakly closed set. Since ϕ is weakly

lower-continuous, we know that ϕ is bounded from below on weakly sequential compact and

weakly closed set B. The conclusion is proved by Theorem 3.

Corollary 3 Assume that X is a reflexive Banach space, ϕ : X → R∪+∞, 6≡ +∞, is a convex

lower semi-continuous functional, and satisfies

lim inf
||x||→∞

ϕ(x)

||x||
≥ 0.

Then ∀ε > 0, ϕ has ε−approximately minimal point.

Proof From [10], ϕ is convex and lower semi-continuous ⇒ϕ is weakly lower semi-continuous

on weakly convex set {x ∈ X |‖x‖ ≤M }, ∀M > 0. The conclusion is proved by Corollary 2.

Theorem 5 Let X be a Banach space, and let ϕ : X → R ∪ +∞, 6≡ +∞, and have Gâteaux

derivative. Suppose ϕ is bounded from below on each bounded set, and satisfies

lim inf
||x||→∞

ϕ(x)

||x||
≥ 0.

Then ∀ε > 0, ∃xε ∈ X such that

(a) ϕ(xε) ≤ ϕ(x) + ε||x− xε||, ∀x ∈ X.

(b) ||ϕ′(xε)|| ≤ ε.

Proof From Theorem 3, (a) is valid. Hence ∀y ∈ X,

ϕ(xε + y) ≥ ϕ(xε) − ε||y||.

Since ϕ has Gâteaux derivative, there exists ϕ′(xε) ∈ X∗ such that

ϕ(xε + tu) − ϕ(xε) = ϕ′(xε)(tu) + ◦(||tu||), ∀u ∈ X.
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Select u satisfying ||u|| = 1, then

ϕ′(xε)(tu) + ◦(t) = ϕ(xε + tu) − ϕ(xε) ≥ −ε||tu|| = −ε|t|.

When t > 0, we have

ϕ′(xε)(u) +
◦(t)

t
≥ −ε,

i.e., ϕ′(xε)(u) ≥ −ε; When t < 0, we have

ϕ′(xε)(u) +
◦(t)

t
≤ ε,

i.e., ϕ′(xε)(u) ≤ ε. From the above inequalities, we have |ϕ′(xε)(u)| ≤ ε for u ∈ X satisfying

||u|| = 1, then ||ϕ′(xε)|| ≤ ε, i.e., (b) holds.
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