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Abstract: The common fixed point problem of mappings is studied in this article. Some
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1 Introduction

As a important theory in mathematics, the fixed point theory was studied extensively
since 1922 with the well-known Banach contractive mapping principle. This principle is a
forceful tool in solving many existence problems in mathematical sciences and engineering.
As a fundamental result in fixed theory, it is extended by several authors on different metric
spaces. In 2007, by replacing the set of real numbers in an ordered Banach space, Huang
and Zhang [1] defined the concept of cone metric space, the class of which is effectively larger
than that of the metric spaces, and they proved some fixed point theorems for mappings
satisfying certain contractive conditions on cone metric spaces. Rezapour and Hamlbarani
[2] obtained some generalizations of the results in [1] by omitting the assumption of normal
cone. After then, the fixed point theory has evolved speedily in cone metric spaces, many
researchers were motivated to study fixed theorems as well as common fixed point theorems
for two or more mappings on cone metric spaces, some literatures on this subject exist. For
details to see [3-15]. In 2011, Hussain and Shah [16] introduced the concept of cone b-
metric spaces as a generalization of b-metric spaces and cone metric spaces. Several authors
studied fixed point and common fixed point problems on cone b-metric spaces. For details

to see [17-21]. In this paper, we shall show that some existence and uniqueness of points of
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coincidence and common fixed points for four mappings satisfying a Lipschitz type condition

in non-normal cone b-metric spaces.

2 Preliminaries

Let E be a real Banach space, P a subset of FE, and 6 is the zero element of E, P is
called to be a cone if

(i) P is closed, nonempty and P # {0};

(ii) a,b € R, a,b > 0,2,y € P imply that ax + by € P;

(iii) = € P and —z € P imply that x = 0.

We denote the the interior of P by intP, if intP # ¢, the cone P is called a solid.

Let P be a cone, a partial ordering “<” on E with respect to P can be defined as
follows: for all z,y € E, x < y if and only if y —z € P. While x < y stands for y —x € intP,
we shall write x < y to indicate that x < y and x # y.

The cone P is called normal if there is a positive constant number N such that § < x <y
implies ||z| < Nly| for all z,y € P. The least positive number satisfying the above
inequality is called the normal constant of P.

Definition 2.1 [8] Let X be a nonempty set and E a real Banach space equipped with
the partial ordering “<” respect to the cone P. Suppose that the mappingd: X x X — E
satisfies following condition:

(i) 0 < d(z,y) for all x,y € X and d(z,y) = 0 if and only if z = y;

(ii) d(z,y) = d(y, z) for all x,y € X;

(ili) d(z,y) < s(d(z,z) +d(z,y)) for all z,y,z € X,
where s is a constant number and s > 1. Then d is called a cone b-metric on X with constant
s and (X, d) is called a cone b-metric space.

Clearly, a cone metric space is a cone b-metric space with constant number s = 1, but
a cone b-metric space with constant s > 1 may be not necessarily a cone metric space (see
[16,19]). So the concept of the cone b-metric space is more general than that of the cone
metric space.

Definition 2.2 [16] Let (X, d) be a cone b-metric space, {z,} C X. We say {x,} is

(i) a Cauchy sequence if for every ¢ in E with < ¢, there is a positive integer number
N such that d(x,,z,,) < c for all n,m > N;

(ii) a Convergent sequence if for every ¢ in E with § < ¢ , there is a positive integer
number N such that d(z,,z) < ¢ for all n > N and some fixed = in X, we denote this by
Zy, — x (n — 00).

A cone b-metric spaceX is said to be complete if every Cauchy sequence in X is con-
vergent in X .

The following properties are often used (note that the cone need not be normal).

Proposition 2.3 [16] Let P be a cone in the real Banach space E.

(i) Let {a,} be a sequence in E, and 0 < a,, — 0, then for every ¢ € intP, there exists
positive integer number N such that a,, < ¢ for all n > N.
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(ii) Let a,b,c € E, a <b and b < ¢, then a < c.

(iii) Let w € E, and § < u < ¢ for each ¢ € intP, then u = 6.

(iv) Let a € P, a < Xaand 0 < A < 1, then a = 6.

Since the topology on a cone b-metric space is a Hausdorff topology (see [8]), the
following proposition is clearly.

Proposition 2.4 The limit of a convergent sequence in a cone b-metric space is unique.

Definition 2.5 [3] Let f and g be self maps of a set X . If w = fx = gz for some z in
X , then z is called a coincidence point of f and g , and w is called a point of coincidence
of fand g .

Definition 2.6 [5] The mappings f,g : X — X are weakly compatible if, for every
z € X, fgr = ggx holds whenever fx = gx.

We say that {f, g} is a weakly compatible pair.

Definition 2.7 [3] Let f and g be weakly compatible self maps of a set X . If f and ¢
have a unique point of coincidence w = fx = gx , then w is the unique common fixed point
of fand g .

3 Main Results

In this section, we shall show that some existence and uniqueness of points of coincidence
and common fixed points for four mappings satisfying a Lipschitz type conditions in a cone
b-metric space without the assumption of normality. We always suppose that P is a solid
cone in F.

Theorem 3.1 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < ai(x,y)d(Hz,Ty) + as(z,y)d(Hz, Fz) + as(x,y)d(Ty, Gy)
+ay(x,y)d(Hz, Gy) + as(z,y)d(Ty, Fx), (3.1)

where a;(z,y) : X x X — [0,+00)(i = 1,2,3,4,5) are nonnegative real functions which
satisfy that

1 1
afl(x7y) +a4(56,y) +a5(32,y) < l,ag(m,y) —l—as(x,y) < gva’?:(x?y) +a4(x,y) < gv

and

al(l’,y) + a3(1’.>y> + 8(15(1‘,2/)

L; = sup < +00;
' eyex 1 —ax(z,y) — sas(z,y)
LQ = sup al(‘ra y) + 0,2(1’,?/) + 8@4(1‘, y) < —|—OO,

z,yeX 1- a3($7 y) - SCM(.’IJ, y)
sup Sa1($7y)+a2(93ay)+Sa4($7y) < +00;
z,yeX 1- sag(a:, y) - sa4(.’v,y)

Sal(xvy) + sag(x,y) + a5(x7y)

z,yeX 1-— Sa?)(xa y) - Sa4($7y>

L

Ly

< +00;
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L5 = sup sal(x,y)~l—a3(:c,y)—l—sa;,(x,y)
z,yeX 1-— 5a2 (xa y) - sas(x,y)

LG = sup Sal(iﬂ,y)+S(I2(£L’,y)—|—a4($,y) < 4o00;
z,yeX 1-— SGQ(.’IJ, y) - Sa5($7y)

< Ho0;

1
LiLy < 5.
S

If F(X) CT(X),G(X)C H(X), one of F(X),G(X),H(X) and T(X) is a complete
subspace of X, and both {F, H} and {G,T} are weakly compatible pairs, then F,G, H and
T have an unique common fixed point.

Proof Let xy be an arbitrary point in X. Since FI(X) C T(X),G(X) C H(X), there
exist x1, x5 € X such that Fxqg =Tz, Gx; = Hxy. Continuing this process, we can obtain
the two sequences {z,}, {y,} C X such that

Yon = F'wop = Ton i1, Yont1 = GToni1 = Hropyo,n =0,1,2,--- . (3~2>
From(3.1) and (3.2), we have

d(Yon+1, Yant2) =d(F22ni2, GT2pi1)
<aq (fE2n+27 x2n+1)d(Hx2n+27 T$2n+1) + as (:E2n+27 £U2n+1)d(Hl’2n+2, Fx2n+2)
+ a3(T2n+2, T2n+1)A(TT2n41, Gont1) + aa(T2nt2, Tani1)d(H T2n 42, Gt
+ as(Tont2, Ton1)d(TTony1, FToni2)
=a1(T2n+2: T2n+1)d(Y2n, Y2n+1) + @2(T2n+2, T2n41)d(Y2n+1, Yon+2)
+ a3(Tan+2, Tan+1)d(Yons Y2nt1) + aa(Tont2; Tant1)d(Y2nt15 Yont1)
+ a5(T2n42; T2n+1)d(Y2n, Y2nt2)
<a1(@2n+2; T2nt1)d(Y2n, Y2nt1) + a2(T2n+2, T2nt1)d(Y2n+1, Y2n+2)
+ a3(T2n+2, T2n+1)d(Y2n, Yont1) + a5 (T2nr2, Tang1)d(Yon, Yont1)
+ sas(Ton+2; T2n+1)d(Y2n+15 Yant2),
which is equivalent to

a1 (Tont2, Tant1) + a3(Tont2, Tang1) + Sa5(Tant2, Tont1)
1 — as(zant2, Tant1) — Sas5(Tant2, Tant1)

< Lid(Yon, Yon+1)- (3.3)

d(ana Yon+1 )

d(Yon+1, Yonta) <

Similarly, also we have

a1(Zon, Tant1) + a2(Tan, Tant1) + Sa4(T2n, Tant1)
1- a3(372n, $2n+1) - 5G4($2n7 $2n+1)
< Lod(Yan—1,Y2n)- (3.4)

From(3.3), (3.4), we can obtain that

IN

d(yan 1 y2n)

d(y2n7 Yon+1 )

d(Yon+1,Yan+2) <  Lid(yan, Y2n+1) < L1Lod(Y2n—1, Y2n)
< S Ly(LyLo)"d(yo, 1), (3.5)
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and

d(Yon, Yont+1) < Lod(Yon-1,Y2n) < L1Lad(Yon—2,Y2n-1)
< S (L L) d(yo, yr) (3.6)

foralln=0,1,2,---. Since L1 Ly < S% <1, by (3.5), (3.6), we have

d(y2ma y2n) <

IN

IN

and

d(y2m+17 y2n+1)

$d(Y2ms Yom+1) + SA(Yam-+1, Y2n)

sd(Yom, Yam+1) + 57 d(Yoms1, Yamr2) + 5°d(Yomt2s Yomrs) + - -

+57 22 d(yan g, Yon—2) + 57" d(Yon—2, Yon—1) + 87 d(Y2n—1, Y2n)
(s(L1Ly)™ + 8> Ly (L1 Ly)™ 4 8* (L1 La)™ ™ + ...

+82n_2m_2L1(L1L2)n_2 + 8271—2771—1 (L1L2)n—1 + SZn—QnL—lLl (LlLQ)n_l)d(y(h yl)

n—m—1 n—m-—2
(S(Lng)m Z (82L1L2>i +82L1(L1L2)m Z (S2L1L2)i
i=0 1=0

L (L L) d )

S(LyLa)™  $*Li(LhLo)™ 50
(1—82L1L2 1—s2L,Ls +s 1)d(Yo, Y1)
(

$(L1L2)" (L4 sL1) | _opis
T Ly )d .
1_82L1L2 +S 1) (y07y1)7 (3 7)

< sd(Yamets Yamrz) + SA(Y2mi2, Yont1)
< sd(Yami1s Yoma2) + 2 d(Yamr2, Yamr3) + 5 A(Y2mr 3, Yamra) + - -

+82n_2m_2d(y2n727 y2n71> + SQn_Qm_ld(anfh an) + SQn_Qm_ld(y2n7 y2n+1)
S (SLl(Lng)m =+ Sz(Lng)m+1 =+ 83L1(L1L2)m+1 4+ ...

_~_S2n72m72(L1L2)n71 + 82n72m71L1 (Lle)nfl + 82n72m71<L1L2)n)d(y0’ yl)

n—m—1 n—m-—2
= (sLi(LyLa)™ Y (sLaLa) + s*(LiLo)™ Y (s’LiLy)!
=0 1=0
+s7 2 (s LiLe)")d(yo, v1)
Li(L{Ly)™ 2(LyLy)™ 1

< LCALE VA B CAT%) i 572N d(yo, y1)

1-— 82L1L2 1-— 82L1L2

sLy(L1La)"(1+sLo) | s~ N d(yo, 1) (3.8)

= 1— 2L, L,

for n > m. It is clearly that

$(L1L2)™(1 4 sLy)
1— 582011,
sLy(L1Ls)™(1 + sLs)
1—s2L,Ls

(
(

+ 572m+1L1)d(y0, y1) — 0 (n — 00),

+ 572" N)d(yo, y1) — 0 (n — 00).
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By Proposition 2.1 (i), for each 6 < ¢, there exists a natural number N; such that

S(L1La)™(1 4 sLy)

1-— 82L1L2

SLl(LlLQ)m(l + SLQ)
1-— 82L1L2

+ 872 L)Y d(yo, v1) < 6

d(y2m)y2n) S (

+572 D d(yo, 1) < e

d(y2m+1> y2n+1) < (

for all n > Nj. It implies that {y2,} and {y2,+1} are a cauchy sequence.
If T(X) is a complete subspace of X, since {y2,} C T(X) and {y2,} is a cauchy sequence,
there exist ¢ € T(X) and p € X such that y2, — ¢(n — o00) and ¢ = Tp. Then, from (3.1),

we have

d(y2n, Gp) =d(F 2y, Gp)

<ai(@2n, p)d(Haon, Tp) + az(w2n, p)d(Hx2p, F22,) + as(@2n, p)d(Tp, Gp)
+ a4(w2n, p)d(HZ2n, Gp) + a5(x2n, p)d(T'p, Faan)

=a1(Tan, P)d(Y2n—1,q) + a2(T20, P)d(Y2n—1, Y2n) + a3(z2n, p)d(q, Gp)
+ as(22n, P)d(Y2n—1, GP) + a5(T2n, p)d(Y2n, q)

<801 (Tan, P)A(Y2n—1,Y2n) + 501 (20, P)d(Y2n, @) + a2(T20, P)d(Y2n—1, Y2n)
+ sa3(T2n, P)d(Y2n, @) + $a3(T20, P)d(Y2n, GP) + 5a4(22n, P)A(Y2n—1, Y2n)
+ 844 (220, P)d(Y2n, GP) + a5(220, p)d(Y2n, 9)

forn=0,1,2,---, which implies that

sa1(xan, p) + az(xon, p) + sas(xon, p)
1 — sas(x2,,p) — sa4(T2n,p)
sa1 (2o, p) + sas(Tan, p) + as(z2n, p)

d(y2n7 Gp) S d(yanlv y2n)

d mny
L= sas(oon,p) — sox(oamp) 007
<Lsd(yan—1,Y2n) + Lad(y2n, q)
forn=10,1,2,---. Since Y2, — q(n — o0) and (3.5), for each 0 < ¢, there exists a positive

integer number Ny such that
c c
Lad(y2n-1,Y2n) < 3 Lad(y2n, q) < B

for all n > N,. It implies that d(y2,, Gp) < ¢ for all n > Ny, so ya, — Gp (n — 0). By
Proposition 2.2, we have Gp = q. So, ¢ is a point of coincidence of G and T
Since G(X) C H(X), there exists u € X such that ¢ = Gp = Hu. By using (3.1) , we

have
d(Fu,q) =d(Fu,Gp)

<ay(u,p)d(Hu, Tp) + az(u, p)d(Hu, Fu) + az(u, p)d(Tp, Gp)
+ ay(u, p)d(Hu, Gp) + as(u, p)d(Tp, Fu)
=(aq(u,p) + as(u, p))d(Fu,q) = Kid(Fu,q),
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where K1 = as(u,p) + as(u,p) < £ < 1. So, d(Fu,q) = 0 by Proposition 2.1 (iii), that is
Fu = q. It implies that ¢ is a point of coincidence of pairs of F' and H. If ¢; is another point
such that Fu; = Huy; = ¢ = Gpy; = Tp; for some vy € X and p; € X. By using (3.1) again

d(g1,q) = d(Fuy,Gp)

a1 (uy, p)d(Huq, Tp) + az(uy, p)d(Huy, Fuy) + az(uq, p)d(Tp, Gp)
taq(u1, p)d(Hur, Gp) + as(u1, p)d(Tp, Fui)

(a1(u1,p) + as(u1, p) + as(u1, p))d(q1, ) = Kad(qu, q), (3.9)

IN

where Ky = ag(u1,p) + as(u1,p) + as(us,p) < 1. It follows by Proposition 2.1 (iii) that
d(q1,9) =0, 1 = q.

If H(X) is a complete subspace of X, since {y2,+1} C H(X) and {y2n11} is a cauchy
sequence, there exist w € H(X) and z € X such that yo,11 — w(n — c0) and w = Hz. By
(3.1), we have

d(yans1, Fz) = d(Fz,Grapiq)
<ai(z,Toni1)d(Hz, Txopi1) + a2(2, Tany1)d(Hz, F2) + a3(2z, x2ni1)d(T22n 41, GToni1)
+ ay4(z, xont1)d(Hz, Gropit) + a5(2, Tapi1)d(T 22,41, F2)
=1 (2, Ton+1)d(W, Y2n) + a2(z, Top11)d(w, F'2) + az(2, 2204+1)d(Y2n, Y2nt1)
+ aa(2, Tan+1)d(w, Yant1) + a5(2, T2n41)d(Y2n, F2)
<sa1(2, Tant1)d(W, Yant1) + 501 (2, T2n+1)d(Y2n, Yant1) + 5a2(2, Tany1)d(W, Y2ni1)
+ sa2(2, Xan11)d(Y2nr1, F'2) + a3(2, 2n11)d(Y2n, Y2n+1) + a4(2, T2ni1)d(w, Y2n11)

+ sa5(2, Tant1)d(Yon, Yont1) + 5a5(2, Tant1)d(Yon41, Fz)
for all n =0,1,2,---, which is equivalent to
5a1(2, Tony1) + a3(2, Tang1) + 505(2, Tong1)

1 — sas(2, Tany1) — sas(2, Tant1)
5a1(2, Tany1) + 5a2(2, Tap1) + as(2, Tant1)

d(y2n+1a FZ) S d(me y2n+1)

d , W
1 — saz(z, Ton41) — 8a5(2, Tant1) Wan41,0)
<Lsd(Y2n, Yan+1) + Led(Yant1,q)
for n = 0,1,2,---. Since yap,11 — w (n — o0) and (3.6), for each § < ¢, there exists a

natural number N3 such that

C

c
Lsd(yon, Yont1) < §7L6d(y2n+17Q) < 5

for all n > Nj. It implies that d(yani1, Fz) < ¢ for all n > N3. So yan11 — Fz (n — o0).
By Proposition 2.2, we have Fz = w. Since F(z) C T(X), there exists a point v € X, such
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that w = Fz = Tw. Then
d(w,Gv) =d(Fz,Gv)
<ai(z,v)d(Hz,Tv) + az(z,v)d(Hz, Fz) + a3(z,v)d(Tv, Gv)
+ as(z,v)d(Hz, Gv) + as(z,v)d(Tv, Fz)

=(az(z,v) + as(z,v))d(w, Gv) = Kzd(w, Gv),
where K3 = az(z,v) + aq4(z,v) < % < 1. By Proposition 2.1 (iii), we have d(w, Gv) = 6, that
is Gv = w. So w is a point of coincidence of F' and H. As we do it in (3.9), one can prove
that it is unique.

If F(X) or G(X) is a complete subspace of X, by the same arguments as above, also
we can obtain the same result as the above. If {F, H} and {G,T} are weakly compatible
pairs, respectively, then F, G, H,T have an unique common fixed point by proposition 2.3.
This complete the proof of theorem.

Corollary 3.2 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < ayd(Hz,Ty) + asd(Hz, Fx) + a3d(Ty, Gy) + asd(Hzx, Gy) + asd(Ty, Fz).
where a; > 0 (i = 1,2, 3,4,5) are nonnegative real number which satisfy that
1 1
a1 +ag+as < —,a0+as < —,a3+ayg <—,
s s s

and there exists § > 0 such that a; +as +as+sas+sas = 1%5, and (az —az)(as—ay) > 3—;5. If
F(X)CT(X),G(X) C H(X), one of F(X),G(X),H(X) and T(X) is a complete subspace
of X, and both {F, H} and {G,T} are weakly compatible pairs, then F,G, H and T have
an unique common fixed point.

Proof Take a;(x,y) =a; (i =1,2,3,4,5). Then

ar(z,y) + as(z,y) + as(2,y) = a1 + as + a5 < é <1,

as(z,y) +as(z,y) = as + a5 < %,

as(z,y) + as(x,y) = a3 + a4 < %,Li <40 (i=1,2,3,4,5,6).
Since (a3 — az)(as — aq) > i—;f, and sa; < 1, we have

5016 4+ s2asas + sPazas < 6 + s2asas + sazas < sPazas + s2asas — 6;
5a10 4 sa; + s2asas + sPazay < sa; + s>azas + sasaq — 0,
2 3 3 2 4
say(a; + az + az + saq + sas) + s azas + s°azay + s“azaz + s~ agas
2 2 3 3 2 4
< 1—say; —saz — s“ay — s“as + s°asay + s°azas + s“agaz + S"agas,

which implies that

s*(ay + as + sas)(a1 + ag + say) < (1 — say — s%as)(1 — saz — say).
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Hence, we can obtain that

ai; + as + sas a1+a2+sa4< a1 +ag+sas ap+ as + say < 1

5

LiLy =

l1—as—sas 1—as— say l—sa2—32a5.1—sa3—52a4 s
From Theorem 3.1, we complete the proof of corollary.

Corollary 3.3 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < a1d(Hz,Ty) + asd(Hzx, Fx) + a3d(Ty, Gy) + asd(Hz, Gy) + asd(Ty, Fz),

where a; > 0 (i = 1,2,3,4,5) are nonnegative real number which satisfy that

a; + az + az + sayq + sas =

1
;7
and az < ag,a;5 < a4 or az > as,as > ag. If F(X) C T(X),G(X) C H(X), one of
F(X),G(X),H(X) and T(X) is a complete subspace of X, and both {F, H} and {G,T} are
weakly compatible pairs, then F, G, H and T have an unique common fixed point.

Proof Since a3z < as,a5 < aq or az > as, a5 > a4, then as + az # 0. We can choose §
such that 0 < § < min{%(ag —as)(as — ay), s(az +az)}. By setting af = a1+ 2,a} =a; (i =
2,3,4,5), we have

d(Fz,Gy) < ajd(Hz,Ty) + ahd(Hz, Fx) + a3d(Ty, Gy) + ayd(Hz, Gy) + asd(Ty, Fz)

for all z,y € X. It is easy to see that

R, d J 5 1 1
agta,+ag=a1+—-—+as+as<a;+-—+sas+sas=—-—+—-——az—az3 < —;
s s s s S
1
alg-i—a’s:a,z-l-asSa2+sa5<a1+a2+a3+5a4+5a5:g;
1
a§,+aﬁl:a3+a4§a3—|—5a4<a1+a2—|—a3+3a4+5a5:g;
/ ’ / / ’ 0 1+6
a1+a2+a3+5a4+5a5:a1+g+a2+a3+sa4+sa5: p

. 26
(a5 —a5)(ag — ay) = (a3 — az)(as — as) > R

So we know that the conclusions are true by Corollary 3.1.
Remark If s =1, that is, (X, d) is a cone metric space, and take H = T in Corollary

3.2 and Corollary 3.3, we obtain Corollary 1 and Corollary 2 in [8].
Corollary 3.4 Let (X, d) be a cone b-metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < a1d(Hz,Ty) + asd(Hzx, Fx) + a3d(Ty, Gy) + asd(Hz, Gy) + asd(Ty, Fz),

where a; > 0 (i = 1,2,3,4,5) are nonnegative real number which satisfy that

1
aj + ag + az + 2smax(ay, as) < B
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or
1
a1 + 2max(az, as) + saq + sas) < 5
IfF(X)CT(X),G(X)C H(X),oneof F(X),G(X), H(X) and T(X) is a complete subspace
of X, and both {F, H} and {G,T} are weakly compatible pairs, then F,G, H and T have

an unique common fixed point.
Proof We take a;(z,y) =a; (i =1,2,3,4,5) in Theorem 3.1. If

ay + as + az + 2smax(ay, as) < —,
s
then

a1($,y) + a4(x,y) =+ Cls(l’,y) =a1+a4+tas

1
< ai + saq + sas < a; + as + az + 2smax(ay, as) < — < 1,
s

as(z,y) + as(z,y) = as + a5 < as + sas < a; + as + az + 2s max(aq, as) <

)

[V IV

az(r,y) + as(z,y) = az + as < az + sag < ay + ag + az + 2s max(ay, as) <
L; < 400 (i=1,2,3,4,5,6).

)

Since

a1 + az + as + 2sas < a; + az + a3 + 2smax(aq, a5) <

)

ay + ag + az + 2saq < ag + as + az + 2s max(aq, az) <

)

[V

then
1 1—say —s?a5 1 —as — sas
a1 +as+ sas < — —as — sas = < ;
s s s

and

1 1—sas —s?ay 1 —as— say
a1 +as + say < — —ag — say = < ,
s s s
which implies that

a1 + az + sa 1 a1 + as + sa 1
1 3 5<*;L2: 1 2 4<7'

Ly =
1 — ay — sas S 1 — a3 — sau S

So LiLy < %2
If a1 + 2max(as, a3) + saq + saz) < %, also we have

1 1
al(xay) +a4(:r,y) +a5($7y) < 1,a2(x,y) +a5($7y) < g,ag(x,y) +a4(x,y) < g7
L; < +00 (i=1,2,3,4,5,6).

Since
a1 + 2az + say + sas < a; + 2max(aq, az) + saq + sas < —,
s

ay + 2a3 + sag + sas < a; + 2max(ag, az) + saq + say < —,
s
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then
1 1—say — s%a5 1 —as — sas
a; +ag +say < — —ag — Sag = < ;
s s s

and

1 1—sas —s?ay 1 —as— say
a; +as+sas < — —as — Saq = < .
s s s
It follows that - -
a1+ as + sas aj + as + sa
LiLy— 1 3 5 a1 2 42
1—ay—sas 1—as— say

VA
ol

By Theorem 3.1, we complete the proof.
Corollary 3.5 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F, G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < ad(Hz,Ty) + B(d(Hz, Fx) + d(Ty, Gy)) + v(d(Hz, Gy) + d(Ty, Fz)),

where «, 3, are nonnegative real number which satisfy that a4+ 20 4 2svy < % I F(X) C
T(X),G(X)C H(X),oneof F(X),G(X), H(X) and T'(X) is a complete subspace of X, and
both {F, H} and {G,T} are weakly compatible pairs, then F, G, H and T have an unique
common fixed point.

Proof Let a1 = a,as = a3 = §,a4 = a5 = 7 in Corollary 3.4.

Corollary 3.6 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < ad(Hz,Ty) + B(d(Hz, Fx) + d(Ty, Gy)),

where «, 3 are nonnegative real number which satisfy that a + 26 < % . If F(X) C

T(X),G(X) C H(X),oneof F(X),G(X),H(X) and T'(X) is a complete subspace of X, and
both {F, H} and {G,T} are weakly compatible pairs, then F,G, H and T have an unique
common fixed point.

Proof Let a; = a,a; = a3z = (3,a4 = a5 = 0 in Corollary 3.4.

Corollary 3.7 Let (X, d) be a cone b-metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < Md(Hzx, Fz) + cd(Ty, Gy)),

where ), k are nonnegative real number which satisfy that A+ < 1. If F(X) C T(X), G(X)
H(X), one of F(X),G(X),H(X) and T(X) is a complete subspace of X, and both {F, H}
and {G, T} are weakly compatible pairs, then F,G, H and T have an unique common fixed

N

point.

Proof Let a; =a4 =as =0,a; = \,a3 =k in Corollary 3.4.

Corollary 3.8 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,T : X — X satisfy following conditions: for all z,y € X,

d(Fz,Gy) < Md(Hz,Gy) + kd(Ty, Fx)),
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where ), k are nonnegative real number which satisfy that A+ < %. If F(X) C T(X),G(X) C
H(X), one of F(X),G(X),H(X) and T(X) is a complete subspace of X, and both {F, H}
and {G, T} are weakly compatible pairs, then F, G, H and T have an unique common fixed
point.

Proof Let a; =as =a3=0,a4 = A, a5 =k in Corollary 3.4.

Remark Corollary 3.4 improves Theorem 3.8 in [18], if s = 1 in Corollaries 3.4-3.8,
we obtain Theorem 2.1 and Corollaries 2.4-2.7 in [15].

Example1l Let X ={1,2,3},E=R* P ={(z,y)/r >0,y >0}andd: X x X — F
be defined as follows:

d(1,1) = d(2,2) = d(3,3) = (0,0);
d(1,2) = d(2,1) = (2,2),d(1,3) = d(3,1) = (10, 10),d(2,3) = d(3,2) = (3,3).

Then it is easy to see that (X, d) is a cone b-metric space with constant s = 2. Mappings
F,G,H,T: X — X is defined by G(z) =1 for all x € X and

R B TR BARE TR Beh

Let
_ 1 _ 1 _ 1 _ 9 _ 1
MTE T 500" T 125 ™ T 200" T 10007
then )
ai; + ag + as + sayq + sas = —,
and as > as,as > as. We obtain
(2,2) =d(2,1) = d(F2,G3)
1 1 1 9
—d(H2,T —d(H2,F2 —dT —d(H2 ——d(T3, F2
<50( 3)+ O( )+ (3G3)+4O( G3)+1000(3, )
1 9
2 2 —d(2,1 1 —d(2,2
E’)Oal(3 )+ d(3 )+ 125d( )+ 40d(3 )+ 1000d( )
9 1193
1
50(3 3)+ 50 (3 3)+ 125(2 2)+ 40( 0,10) = 1000(2 2).

Similarly, we know that other five inequalities are also true.

(0,0) = d(F1,G2) < d(H1,T2) + —d(Hl F1)+ ——d(T2,G2) + —d(Hl G2) + ——d(T2, F1),

50 125 1000
1 9

(0,0) = d(F1,G3) < 5 d(H1,T3) + %d(Hl F1)+ Esd(T?, G3) + Ed(H1 G3) + md(T3 F1),

(0,0) = d(F3,G1) < %d(H& T1) + %d(H?), F3)+ ﬁd(TL G1) + —d(HS G1) + —d(Tl F3),
1 1 1 9

(0,0) = d(F3,G2) < £5d(H3,T2) + 5 d(H3, F3) + 1o=d(T2,G2) + 1d(H3,G2) + md(T? F3),
1 1 1 9

(2,2) = d(F2,G1) < g5 d(H2,T1) + z5d(H2,F2) + 15=d(T1,G1) + (5d(H2,G1) + md(T1 F2).
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Thus, the all conditions in Corollary 3.2 are satisfied, I, G, H,T have an unique common
fixed point z* = 1.

It needs to mention that, for any nonnegative real number «, 3, satisfying
1
a+ 20+ 2sy < 3
we have
ad(H2,T3) 4+ B(d(H2,F2) + d(T3,G3)) + v(d(H2,G3) + d(T3, F2))

—ad(3,2) + B(d(3,2) + d(2,1)) +v(d(3,1) + d(2,2))
=a(3,3) + 6((3,3) + (2,2)) 4+ ~(10,10)

3 5 3 5 5
~Cat2prme =S+ 20+ 2
3(a+2ﬁ—|—25’y)(2 2) < g ;(2 2) < (2,2)

=d(F2,G3).
So, the conditions in Corollary 3.5 are not satisfied.
Theorem 3.3 Let (X, d) be a cone b- metric space with the constant s > 1. Suppose
that mappings F,G, H,J, T,V : X — X satisfy following conditions: for all z,y € X,
d(Fl‘,Gy) S al(xvy)d(‘]Tl‘vHVy) +CL2(.7,', y)d(JT.’L‘,FJ,‘) +a3($7y)d(HVy7 Gy)
+as(z,y)d(JTz,Gy) + as(x,y)d(HVy, Fx), (3.10)

where a;(z,y) (i =1,2,3,4,5) satisfy same conditions as in Theorem 3.1. If
FJ=JF,JT =TJ,GH = HG,HV = VH, F(X) C HV(X),G(X) C JT(X),

one of FI(X),G(X),JT(X) and HV (X) is a complete subspace of X, and both {F, JT'} and
{G,HV} are weakly compatible pairs, then F,G, H,J,T and V have an unique common
fixed point.
Proof From Theorem 3.1, we know that F,G,JT and HV have an unique common
fixed point ¢, that is,
Fg=Gq=JTq=HVq=q.

Since F'J = JF,JT =TJ, we have

d(Jq,q) =d(JFq,Gq) = d(FJq,Gq)
<ai(Jq,q)d(JTJq,HV q)
+as(Jq,q)d(JT Jq, FJq) + a3(Jq,q)d(HV q,Gq)
+ as(Jq,q)d(JTJq, Gq) + as(Jq,q)d(HV g, F Jq)
=a1(Jq,q)d(Jq,q) + as(Jq,q)d(Jq, Jq) + a3(Jq,q)d(q; q)
+ as(Jq, q)d(Jq, q) + as(Jq, q)d(q, Jq)
=(a1(Jq,q) + as(Jq,q) + as(Jq,q))d(Jq, q),
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which implies that d(Jq,q) = 6. So Jg=¢q, and Tqg=TJg= JTq=q.
Similarly, we can obtain that Hqg = Vq = ¢. Therefore,q is the unique common fixed
point of F,G,H, J,T and V.
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