首页 | 官方网站   微博 | 高级检索  
     


Phonon-assisted excitation energy transfer in photosynthetic systems
Affiliation:Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract:The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.
Keywords:excitation energy transfer  high-energy intramolecular vibrational motion  resonant coherent transfer  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号