首页 | 本学科首页   官方微博 | 高级检索  
     


Complex Networks from Chaotic Time Series on Riemannian Manifold
Abstract:
Complex networks are important paradigms for analyzing the complex systems as they allow understanding the structural properties of systems composed of different interacting entities.In this work we propose a reliable method for constructing complex networks from chaotic time series.We first estimate the covariance matrices,then a geodesic-based distance between the covariance matrices is introduced.Consequently the network can be constructed on a Riemannian manifold where the nodes and edges correspond to the covariance matrix and geodesic-based distance,respectively.The proposed method provides us with an intrinsic geometry viewpoint to understand the time series.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号