首页 | 本学科首页   官方微博 | 高级检索  
     


Nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate)‐silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation
Abstract:The chiral organic‐inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open‐tubular capillary electrochromatography (OT‐CEC). Hence, a novel protocol for the preparation of an OT column coated with nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate) (nano‐ABDMPC)‐silica hybrid sol through in situ layer‐by‐layer self‐assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano‐ABDMPC‐silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1‐phenyl‐2‐propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run‐to‐run, day‐to‐day and column‐to‐column. These results demonstrated the promising applicability of nano‐ABDMPC‐silica hybrid sol coated OT column in CEC enantioseparations.
Keywords:Capillary electrochromatography  Enantioseparation  Nano‐amylose  Open‐tubular capillary column
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号