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EXISTENCE OF GLOBAL SOLUTIONS OF

MULTICOMPONENT REACTIVE

TRANSPORT PROBLEMS WITH MASS

ACTION KINETICS IN POROUS MEDIA

Serge Kräutle

Abstract We prove the existence and uniqueness of time-global solutions
for multi-species multi-reaction advection-diffusion-dispersion problems with
mass action kinetics in the space W 2,1

p ([0, T ]×Ω). The reaction terms of mass
action kinetics may contain polynomial expressions of arbitrarily high order.
The difficulty to obtain an a priori estimate for the semilinar system of PDEs
is tackled with a special Lyapunov function.
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1. Introduction

We consider a set of chemical species which are dissolved in a fluid and subject
to chemical reactions. The fluid may flow through a porous medium. The species
are transported through advective, diffusive and dispersive flow. An important
application of this model is the reactive transport of species in the subsurface, i.e.,
in the groundwater, but setting the so-called porosity to unity, the results also apply
to flow problems without porous media involved. The mathematical model consists
of a system of semilinear partial differential equations (PDEs) for the concentrations
of the species. They are coupled through nonlinear rate terms. In the following we
will focus on reversible reaction rates of mass action type. Mass action kinetics is
contained in most hydrogeochemical models (e.g., [4, 6, 9, 12], among many others)
and thus plays an important role in particular in computational hydrogeochemistry.
We do not limit the scope of the model by posing any restrictions on the number of
species, the number of reactions, the dimension of the physical space, or the degree
of nonlinearity of the rates.

An existence result for reactive transport with mass action kinetics is already
given in [15] for the space L∞(0, T ; C2+α(Ω)). However, this result is restricted
to purely diffusive transport (no advection) and homogeneous Neumann boundary
conditions, and the assumption of strict positivity of solutions is made. Its deriva-
tion is based on the maximum principle. In the following we will derive a global
existence result in the space W 2,1

p ([0, T ]×Ω) (see Sec. 2.1), where transport through
advection and dispersion with variable porosity of the medium is included, also
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dealing with more realistic flux boundary conditions. Working in a solution space
of lower regularity than [15] leads to weaker assumptions on the data. Furthermore,
we do not rely on an a priori assumption of strict positivity of solutions. The main
difficulty is the high nonlinearity of the rate terms, which may consist of polynomial
expressions of arbitrarily high order. We attack this problem with the method of
a priori estimates, exploiting the structure of mass action rates. It turns out that,
roughly speaking, it is sufficient that the data must come with such regularity that
the corresponding linear advection-diffusion problem (i.e., without the nonlinear
rate terms) admits a W 2,1

p ([0, T ]×Ω) solution, which depends continuously on the
right-hand side f ∈ Lp([0, T ]×Ω).

In [5] a result is given for multicomponent reactive flow with high order poly-
nomial source terms, which in principal covers mass action kinetics; however, there
a restrictive assumption called ’intermediate sum condition’ is required. Roughly
speaking, it means that the growth terms of at least one species have to be severely
bounded. We do not pose any condition of this kind in the following.

The article is structured as follows. In Sec. 2.1 we give some definitions and we
list our assumptions. In Sec. 2.2 and 2.3 we derive some results on the nonnegativity
of solutions and we use a simple ODE model to briefly show how the structural
information of a multicomponent mass action system can be exploited to derive an
a priori estimate. In Sec. 3 we prove the existence and uniqueness of solutions of
the PDE model, which is the main result of this paper, see Theorem 3.2. The most
effort to obtain an a priori estimate has to be put into the proof of Lemma 3.1
which is the main step to derive the a priori estimates, first in L∞(0, T ; Lr(Ω))
(Lemma 3.2), then in W 2,1

p ([0, T ]×Ω) (Lemma 3.3). In Sec. 4 we conclude with
some remarks on the strategy applied.

2. Definitions, assumptions, and preliminary results

2.1. Definitions and assumptions

Let T > 0 be a fixed time arbitrarily large. Let Ω ⊂ R
n be a bounded domain with

n ≥ 2, and ν the outside unit normal vector on ∂Ω. Let QT = (0, T ) × Ω be the
space-time domain.

The sets of positive (nonnegative, respectively) real numbers are denoted by
R+ = {x∈R |x> 0} and R+ = {x∈R |x≥ 0}. Lp

+(M) := {u∈Lp(M) |u≥ 0 a.e.}
is the set of nonnegative Lp-functions. Inequalities such as u ≥ 0 are also used for
expressions in R

n, if they hold for each component. | · |I , 〈·, ·〉I denote the Euclidian
norm and inner product in R

I . ∇=∇x is the derivative of a scalar function with
respect to the vector x ∈ Ω; ∂t, ∂xi

denote partial differentiation. D = Dx is the
derivative (Jacobian) of a vector-valued function with respect to the vector x ∈ Ω.
The Banach space

W 2,1
p (QT ) = {u | u, ∂tu, ∂xi

u, ∂xi
∂xj

u ∈ Lp(QT )∀ i, j = 1, ..., n}

with the norm

‖u‖W 2,1
p (QT )

=
(

‖u‖pLp(QT ) + ‖∂tu‖
p
Lp(QT ) +

n
∑

i=1

‖∂xi
u‖pLp(QT ) +

n
∑

i,j=1

‖∂xi
∂xj

u‖pLp(QT )

)1/p
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is the space in which we will search for a solution ui ∈ W 2,1
p (QT ). Vector-valued

function spaces are denoted by a superscript indicating the dimension, that means
for example Lp(Ω)3 = Lp(Ω)×Lp(Ω)×Lp(Ω); the corresponding norms are denoted

by ‖v‖Lp(M)I = (
∑I

i=1 ‖vi‖
p
Lp(M))

1/p,

‖v‖L∞(M)I = maxi=1...I ‖vi‖L∞(M); analogously we define W 2,1
p (QT )I , etc.

By c we denote generic positive constants depending only on the problem pa-
rameters, but not on the solution, if not indicated otherwise.

Let us define the transport operator

Lui = div(−A(t, x)∇ui + q(t, x)ui)

with A(t, x) being a symmetric matrix which is uniformly elliptic, and with q(t, x) ∈
R

n being a given flow field (Darcy velocity field); u = (u1, ..., uI)
T is the vec-

tor of concentrations. We define Lu = (Lu1, ..., LuI). Hence, we assume that
all species are subject to the same advection and the same diffusion-dispersion.
Note that in the community of multicomponent hydrogeosciences, models with
species-independent diffusion-dispersion are common (a) since in most situations
the (species-dependent) molecular diffusion is very small compared to the (species-
independent) dispersion caused by the microscale, and (b) since it is exploited for
high-performance numerical solution strategies for reactive transport problems (e.g.,
[2, 4, 9, 12] among many others). Many results on reactive problems with species-
dependent diffusion, but usually (only) with two species and one or two specific
reaction rates, can be found in the work of M. Pierre, e.g., [17].

The J reactions are of forward-backward type, also called reversible reactions,

sf
1jX1 + ... + sf

IjXI ←→ sb
1jX1 + ... + sb

IjXI , j = 1, ..., J,

sf
ij , s

b
ij ≥ 0. The matrices Sf = (sf

ij), Sb = (sb
ij) ∈ R

I×J

+ , S = Sb−Sf are called

stoichiometric matrices; the rate vector is R(u) = Rf (u)−Rb(u). According to the
mass action law the rates read

Rf
j (u) = kf

j

I
∏

i=1

u
sf

ij

i , Rb
j(u) = kb

j

I
∏

i=1

u
sb

ij

i , kf
j , kb

j > 0.

Note that the model admits of reactions such as 0→ X1+X2 or X1+2X2 → X1+3X2.
Hence, no strict physical mass conservation is included, i.e., no obvious a priori
L1(Ω)-bound of the solution can be given easily.

The Darcy flow field q is related to the water content θ through the mass con-
servation equation

∂tθ + div q = 0. (1)

We want to solve the following problem:

Problem 2.1. Find u ∈ W 2,1
p (QT )I such that

∂t(θu) + Lu = θ S R(u) (2)

with an initial condition

u(0) = u0 ≥ 0 on Ω
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and an appropriate boundary condition. We may consider normal-diffusive-flux-zero
boundary conditions (natural boundary conditions)

〈ν, A∇ui〉n = 0 (3)

or flux boundary conditions

〈ν, A∇ui − uiq〉n = bi, with bi ≥ 0, (4)

for i = 1, ..., I. To be as general as possible, we allow that (3) holds on ∂ΩN and
(4) holds on ∂ΩF , with a disjoint decomposition ∂Ω = ∂ΩN ∪ ∂ΩF . Condition
(3) is a typical outflow boundary condition, while (4) is a typical inflow boundary
condition.∗

Note that in Sec. 3.4 there is a remark concerning the extension to some kind
of Dirichlet conditions.

Let us state the assumptions required for Sec. 3.2. The condition on p in As-
sumption 1 is required for the compact embedding (5). The requirement that the
stoichiometric coefficients are not in (0, 1) (Assumption 2) is used in the uniqueness
proof (Theorem 3.2); see also Sec. 3.4. The Assumption 3 collects what is explicitly
required for the estimates of Sec. 3.2, and finally we need the Assumption 4 on the
solvability of the linear advection-diffusion problem. (Let us remark that Ass. 3
might be already included in Ass. 4 to some extent.)

Assumption 1. Let p > n+1 hold. Let ∂Ω ⊂ R
n be bounded, and piecewise smooth

with nonzero interior angles in the sense of [11] p. 9.

Assumption 2. The columns of matrix S are linear independent, and sf
ij , s

b
ij ∈

{0} ∪ [1,∞) for all i, j.

Assumption 3. Let u0 ∈ Lρ
+(Ω) for a ρ > ps̄, where s̄ = max{‖Sb‖1, ‖Sf‖1}

and where ‖M‖1 = max
j

∑

i

|mij | is the matrix column norm. Let A be symmetric

uniformly positive definite with entries aij ∈L∞(QT ): There is a>0 with

a |ξ|2n ≤ 〈A(t, x) ξ, ξ〉n

for all ξ ∈ R
n, (t, x) ∈ QT . Let θ ∈ C(0, T ; L∞

+ (Ω)) with θ ≥ θ0 > 0. Let q ∈
L∞(QT )n ∩ L2(0, T ; H1(Ω))n with div q = −∂tθ ∈ L∞(QT ), 〈q, ν〉n ∈ L∞([0, T ]×

∂Ω). Let kf
j , kb

j ∈ R+, and b ∈ L∞(0, T ; L∞(∂ΩF ))I .

Assumption 4. The initial data, the boundary conditions/data, the smoothness of
∂Ω, and the coefficient functions of (2)-(4) are given in such a way that the linear
scalar problem

∂t(θu) + Lu = f,

with initial and boundary conditions from Problem 2.1, has a solution u∈W 2,1
p (QT )

for arbitrary f ∈Lp(QT ), and the solution depends continuously on f .

Remark 2.1. (a) The Assumption 1 on p assures that the embedding W 1
p (QT ) ⊂

C(QT ), hence, the embedding

W 2,1
p (QT ) ⊂ C(QT ), (5)

∗However, it is not essential to postulate 〈ν, q〉n ≥ 0 on ∂ΩN or 〈ν, q〉n ≤ 0 on ∂ΩF .
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is compact (e.g., [1]); as a consequence, ui and products and even polynomial ex-
pressions in the ui are in C(QT ). Let us remark that the condition on p may be
weakened to p > n

2 +1 for smooth ∂Ω [18].
(b) One can find concrete statements on the required regularity of the data in As-
sumption 4 for example in [18] (Sec. 9.2.3) and [11] (p. 342 ff, the remark at the
end of §9 on p. 351, and p. 621 ff).

For later use we state that obviously

∂t(θu
2
i ) =

{

(∂tθ)u2
i + θ ∂tu

2
i ,

∂t(θui)ui + θ
2 ∂tu

2
i .

Substracting half of the first from the second equation and using (1) we get

1

2
∂t(θu

2
i ) = ∂t(θui)ui +

u2
i

2
div q. (6)

For later use we further state that an estimate

‖u‖2L2(∂Ω) ≤ c ‖u‖H1(Ω)‖u‖L2(Ω) (7)

holds for all u∈H1(Ω) with constant depending only on Ω. This is, if
∫

∂Ω
u do = 0

and the Assumption 1 on ∂Ω holds, a special case of [11] Ch. II, (2.21). Estimate
(7) carries over to non-meanvalue-free u easily ([10] p. 159).

Furthermore we state that for u, v∈L∞(Ω) and s≥1,

∣

∣|u(x)|s − |v(x)|s
∣

∣ ≤ s max{‖u‖s−1
L∞(Ω), ‖v‖

s−1
L∞(Ω)} ‖u− v‖L∞(Ω) (8)

a.e. holds. This follows from the application of the mean value theorem to ξ → ξs

and the monotonic growth of ξ → ξs−1 for s≥1.

2.2. Nonnegativity of solutions

Nonnegativity of solutions for nonnegative initial values is already investigated in
[16] for classical solutions and isolating boundary conditions. Since these restrictions
do not hold for our problem, we give a simple proof of nonnegativity, based on the
energy method, inspired by [14]. Let us introduce the following problem with the
modified rate function

Problem 2.2. Find u ∈ W 2,1
p (QT )I such that

∂t(θu) + Lu = θ S R(u+) (9)

with the same initial and boundary condition as Problem 2.1. Here, u+ denotes the
(componentwise) positive part of vector u:

u+
i = max{ui, 0}, u−

i = min{ui, 0}, ui = u+
i + u−

i

Note that thanks to (1) the PDE (9) may be expressed as

θ ∂tui − div(A∇ui) + 〈q,∇ui〉n = θ 〈si, R(u+)〉J , i = 1, ..., I. (10)

Here si denotes the i-th row of matrix S.
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Lemma 2.1. Let Assumptions 1 and 3 hold, and let us assume that u is a solution
of Problem 2.2. Then u ≥ 0 holds. Hence, u is obviously a solution of Problem 2.1.

Proof. For a τ ∈ (0, T ) we test the i-th equation of (9) by u−
i on Qτ and apply

partial integration for the diffusive term. We set Q−
i := {(t, x)∈Qτ |ui(t, x) < 0},

Ω−
i (t) = {x∈Ω |ui(t, x) < 0}, which are open subsets since ui ∈ C(QT ). Since u−

i

is equal to ui on Q−
i and is zero otherwise, we may restrict the integration domain

from Qτ to Q−
i and replace ui by u−

i there. For the term ∂t(θu
−
i )u−

i , we apply (6)
on Q−

i . We obtain

∫

Ω−

i
(t)

θ(τ,x)
2 (u−

i )2(τ, x) dx +
τ
∫

0

∫

Ω−

i
(t)

〈A∇u−
i ,∇u−

i 〉n dx dt

=
τ
∫

0

∫

Ω−

i
(t)

(

−
(u−

i
)2

2 div q − 〈q,∇u−
i 〉n u−

i

+ θu−
i

J
∑

j=1

(sb
ij − sf

ij)(R
f
j (u+)−Rb

j(u
+))
)

dx dt

+
τ
∫

0

∫

∂Ω

〈A∇u−
i , ν〉n u−

i do dt

(11)

Note that we have used the nonnegativity of u0,i. Next we exploit the structure
information that the exponents in Rf(u+), Rb(u+) are the same as the coefficients

sf
ij , sb

ij , resp.: If sb
ij >0 then Rb

j(u
+) contains a nontrivial factor (u+

i )sb
ij , and since

u+
i u−

i = 0, u−
i Rb

j(u
+) = 0 follows. Analogously, if sf

ij > 0 then Rf
j (u+) contains

a nontrivial factor (u+
i )sf

ij , hence, u−
i Rf

j (u+) = 0. As a result, there are only the

reactive terms θu−
i

∑J
j=1 sb

ijR
f
j (u+) + sf

ijR
b
j(u

+) ≤ 0, since u−
i ≤0.

Exploiting the boundary conditions the boundary integral in (11) equals

τ
∫

0

∫

∂ΩF

biu
−
i do dt +

τ
∫

0

∫

∂ΩF

(u−
i )2 〈q, ν〉n do dt. (12)

Since bi≥ 0, u−
i ≤ 0, the first integral is estimated by zero. The same can be done

to the second integral, if the assumption of Footnote ∗ is made. Otherwise we can
estimate it by a constant times ‖u−

i ‖
2
L2([0,T ]×∂Ω). Hence, using (7) and Cauchy’s

inequality, (12) is estimated by a term

ǫ

∫ τ

0

‖∇u−
i ‖

2
L2(Ω)n dx dt + Cǫ

∫ τ

0

‖u−
i ‖

2
L2(Ω) dx dt; (13)

the constant Cǫ depends on ǫ > 0 and the data. The two advective terms in
(11) can also be estimated by a term of the shape (13). Next we set E(τ) =
∫

Ω−

i
(t)

θ(τ,x)
2 u−

i (τ, x)2 dx and use the positivity θ≥θ0>0 to obtain

E(τ) +

τ
∫

0

∫

Ω−

i
(t)

〈A∇u−
i ,∇u−

i 〉n dx dt

≤ ǫ

τ
∫

0

‖∇u−
i ‖

2
L2(Ω−

i
(t))n dt + Cǫ

τ
∫

0

E(t) dt.
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Choosing ǫ=a, for instance, Gronwall’s lemma leads to E(τ)≤0 from which ui≥0
follows. �

2.3. A Lyapunov function for the ODE case

It is well known that for the ODE case,

u′(t) = SR(u(t)), u(0) > 0, (14)

describing an isotropic, closed system, a Lyapunov function inspired by the Gibbs
free energy can be used. We give the argumentation how to derive an a priori
estimate for the ODE case here, since it will be applied in a similar, but more
technical way to the PDE case in Sec. 3. Note that we skip the proof of strict
positivity of solutions of (14). Let us define the functions

gi : R+ −→ R, gi(ξi) = (µi − 1 + ln ξi) ξi + exp(1− µi),

g : R
I

+ −→ R, g(ξ) =
I
∑

i=1

gi(ξi).
(15)

The constants µi, i = 1, ..., I, are defined as follows: Let µ ∈ R
I be a solution of

the linear system

ST µ = − lnK (16)

where K ∈ R
J is the vector of equilibrium constants Kj = kf

j /kb
j related to the J

reactions. Note that, due to Assumption 2, matrix S has maximal column rank J ,
i.e., the range of ST is the whole R

J . Hence, a solution µ of (16) exists. (In general,
µ is not unique.) An important property of gi, g is that

g′i(ξi) = µi + ln ξi,
dg

dξ
= µ + ln ξ.

Note that gi, g are also well defined for zero concentrations (but g′i, dg/dξ are not).
A simple computation (computing the minimum of the two functions ξi 7→ gi(ξi)−ξi

and ξi 7→ gi(ξi), R+ → R), shows that

gi(ξi) ≥ ξi and gi(ξi) ≥ e−µi (e−1) > 0 for all ξi ∈ R+; (17)

in fact, the additive constant exp(1−µi) incorporated in the definition (15) of gi was
chosen in such a way that gi dominates ξi. By (17); any bound for g(ξ) immediately
leads to a bound for ξ:

g(ξ) ≥ gi(ξi) ≥ ξi ∀ξ ∈ R
I

+, i = 1, ..., I. (18)

One can show easily that the mapping t 7−→ g(u(t)), where u(t) is a (local) solution
of (14), is nonincreasing:

d

dt
g(u(t)) = 〈∇g(u(t)), u′(t)〉I = 〈µ+lnu(t) , SR(u(t))〉I

= 〈ST µ+ST lnu(t) , R(u(t))〉J

= 〈− lnK+ST lnu(t) , R(u(t))〉J ≤ 0. (19)
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The nonpositivity of (19) results from the fact that for each component j = 1, ..., J
of the inner product, the one factor is positive/zero/negative if and only if the other
factor is negative/zero/positive: In fact, for j = 1, ..., J ,

Rj(u)
>
=
< 0 ⇐⇒ Rf

j (u)
>
=
< Rb

j(u)

⇐⇒ ln kf
j +

I
∑

i=1

sf
ij lnui

>
=
< ln kb

j +

I
∑

i=1

sb
ij lnui

⇐⇒ 0
>
=
< − lnKj +

I
∑

i=1

sij lnui, (20)

which completes the proof of (19). The monotonicity of t 7→ g ◦ u(t) (19) expresses
the attempt of the system to reach chemical equilibrium.

Estimates (18) and (19) lead to the bound

0 ≤ ui(t) ≤ g(u(t)) ≤ g(u(0)) = const (21)

for every i and for all t for which the (local) solution u exists. Hence, a global
solution of (14) exists (e.g., [7]).

3. The a priori estimate

3.1. Some auxiliary functions, and the basic ideas

A straight forward idea to generalize the derivation of an estimate of the solution
from the ODE case of Sec. 2.3 to the PDE case Problem 2.2 seems to use the mapping
t →

∫

Ω g(u(t, x)) dx, where u is a solution. However, with (18), this leads to an
a priori estimate of a solution u and of u lnu with respect to the L∞(0, T ; L1(Ω))I

norm. Such an estimate is useful for problems with moderate nonlinear rate terms
[13, 14], but it is not sufficient to bound the right-hand side of the PDE system
(9). Instead, we will use the Lr(Ω) norm of g ◦ u to define the Lyapunov function,
since this will provide an a priori estimate in L∞(0, T ; Lr(Ω)). For sufficiently
large r = r(p) (such as r = ps̄, s̄ from Ass. 3), this estimate allows to bound the
polynomial right hand side of the PDE in Lp(QT ) and will, thanks to Assumption 4,
lead to an a priori estimate of u in W 2,1

p (QT ). We define for r ≥ 1

fr : R
I

+ −→ R, fr(ξ) = [g(ξ)]r.

From (17) we immediatly obtain the lower bounds

fr(ξ) = g(ξ)r ≥ [gi(ξi)]
r ≥ ξr

i , fr(ξ) ≥ c(r) > 0 (22)

for all ξ∈R
I

+, i=1, ..., I, r∈N. We define the mapping†

Fr : L∞
+ (Ω)I −→ R, Fr(u) = ‖θ1/rg(u)‖rLr(Ω) =

∫

Ω

θ(x) fr(u(x)) dx. (23)

†Note that we suppress any possible dependence of Fr on t, inherited by θ, in the notation.
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Combining (23) and (22) we have the lower bounds

Fr(u) ≥ θ0

∫

Ω

ur
i dx, Fr(u) ≥ c(r) > 0 (24)

for all u ∈ L∞
+ (Ω). where the constant depends on r and the data θ0, Ω, but not

on u. Thus, in order to find L∞(0, T ; Lr(Ω))-bounds for solutions u, it is sufficient
to estimate the value of the functional Fr along u.

We will frequently make use of the (classical) derivative of fr : R
I

+ −→ R,

∂fr(ξ) : R
I
+ −→ R

I , ∂fr(ξ) = r [g(ξ)]r−1 dg

dξ
= r fr−1(ξ) (µ+ln ξ), (25)

r ∈ N. Note the different behaviour of fr and ∂fr for ξ approaching the boundary of
the positive cone: For ξ −→ ξ0 ∈ ∂R

I
+, fr is bounded since (µi− 1+ ln ξi)ξi → 0 for

ξi → 0, while ∂fr(ξ) is unbounded, since µi+ ln ξi is unbounded and fr−1(ξ) 6→ 0.
This has the following consequences: While fr(u) ∈ L∞(Ω) is well defined for
u∈L∞

+ (Ω)I , ∂fr(u) may not be well defined. However, if we have the strict positivity
u ∈ L∞

δ (Ω) = {u∈L∞(Ω) |u≥ δ}, δ > 0, then ∂fr(u) ∈ L∞(Ω) is well defined. In
fact, the following facts obviously hold true. The mappings

Fr : L∞
+ (Ω)I → R,

∂fr : L∞
δ ([t1, t2]×Ω)I → L∞([t1, t2]×Ω)I (26)

are continuous. These are direct consequences of the continuity of fr : R
I

+ → R and
of ∂fr : [δ,∞)T → R.

Let us lay out the main idea how to obtain an a priori estimate. If a function
v : QT → R

I
+ is chosen such that Fr(v), v, ∂fr(v) are sufficiently smooth, in

particular, if v is strictly positive in the sense that v ≥ δ > 0 on QT , then an
equation

Fr(v(t2))− Fr(v(t1))

=

∫

Ω

t2
∫

t1

∂t[θ(t, x) fr(v(t, x))] dx dt (27)

=

t2
∫

t1

∫

Ω

[

θ 〈∂fr(v), ∂tv〉I + ∂tθ fr(v)
]

dx dt,

expressing basically the fundamental theorem of calculus, obviously holds. Since we
cannot be sure that these requirements hold for an arbitrary solution u ∈ W 2,1

p (QT )
of Problem 2.2, we construct uδ(t, x) := u(t, x)+δ and choose a smooth function
v = vδ, e.g., vδ ∈ C∞(QT ), being an approximation to uδ in W 2,1

p (QT ). Note that

due to the embedding (5) vδ is also an approximation of uδ in C(QT ), thus, of the
solution u itself. In particular, without loss of generality, vδ≥δ/2 can be assumed,
i.e., all terms in (27) (with v = vδ) are well defined, in particular ∂fr(vδ), and the
left hand side is an approximation to Fr(u(t2)−Fr(u(t1)) because of the continuity
of Fr (26). The right hand side of (27) (with v=vδ) is an approximation of

t2
∫

t1

∫

Ω

(

θ 〈∂fr(uδ), ∂tuδ〉I + ∂tθ fr(uδ)
)

dx dt. (28)



506 S. Kräutle

Since ∂tuδ = ∂tu, the PDE (10) can be applied to the first term of (28) where ∂fr(uδ)
has the role of a test function. Exploiting uδ ≥ δ, one can check that ∂fr(uδ) ∈
L2(0, T ; H1(Ω))I×n holds.‡ The resulting terms are estimated in Lemma 3.1 by a
term h(δ, u, r) with the property h(δ, u, r)→ 0 for δ → 0 and fixed u, r, plus some
boundary term. This result will be used to establish the limited-growth-property
(29) for t 7→ Fr(u(t)), and, thereby, an L∞(0, T )-estimate for Fr(u) and, using (24),
an Lr(QT )-estimate for u (Lemma 3.2), from which, thanks to Assumption 4, an
W 2,1

p (QT ) estimate follows (Lemma 3.3) when taking r = r(p) sufficiently large.

3.2. Derivation of the a priori estimate

Let us start by stating a central result of this section, expressing the monotonic-
ity/limited growth of the functional Fr along solutions:

Theorem 3.1. Let the Assumptions 1-3 hold and let 0 ≤ t1 < t2 ≤ T be given. Let
u∈W 2,1

p (QT )I be a solution of Problem 2.2. Then the estimate

Fr(u(t2)) ≤ ec r2 (t2−t1) Fr(u(t1)) (29)

holds for all r ∈ N, r≥ 2, where the constant c > 0 depends only on the data, but
not on u, r, t1, t2.

Remark 3.1. (a) Compared to the ODE case (19), we do not obtain monotonicity,
i.e., c = 0 in (29). This is caused by ’chemical energy’ which may enter the domain
through its boundary. The proof of Lemma 3.1 reveals that (29) holds with c=0 if
the isolation condition

〈q, ν〉n = 0 on ∂Ω×(0, T ] and (b = 0 or ∂ΩF = ∅) (30)

is assumed. If only ∂ΩF =∅ then (29) holds with exponent independent of r.
(b) The proofs of Theorem 3.1 and Lemma 3.1 also hold for r=1 if we set fr−2 =
f−1 = 0 and if ∂ΩF = ∅.

In preparation for the proof of Theorem 3.1, we prove the following lemma.

Lemma 3.1. Let the assumptions of the previous theorem hold. Let δ > 0, uδ :=
u+δ. Then the estimate

t2
∫

t1

∫

Ω

[

〈∂fr(uδ), θ∂tuδ〉I dx dt + ∂tθ fr(uδ)
]

dx dt

≤ c r2

t2
∫

t1

Fr(uδ(t)) dt + h(δ, u, r), (31)

holds where c>0 is a constant independent of δ, u, r and where h(δ, u, r) −→ 0 for
δ −→ 0 and fixed u, r.

Proof. (i). Due to Lemma 2.1 uδ≥δ holds. Hence, ∂fr(uδ) ∈ L2(0, T ; H1(Ω))I×n.
As a consequence, we can use ∂fr(uδ) as a test function in the weak formulation of

‡This is not true for ∂fr(u), which is one reason for us to introduce uδ.
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(10) and get by integration by parts

t2
∫

t1

∫

Ω

θ 〈∂fr(uδ), ∂tuδ〉I dx dt

=

t2
∫

t1

∫

Ω

〈∂fr(uδ), θ∂tu〉I dx dt

= Ireac + Idiff + Iadv + Ibdry

with

Ireac =

t2
∫

t1

∫

Ω

θ 〈∂fr(uδ), SR(u+)〉I dx dt

Idiff = −
I
∑

i=1

t2
∫

t1

∫

Ω

〈A∇ui,∇[∂fr(uδ)]i〉n dx dt

Iadv =

t2
∫

t1

∫

Ω

fr(uδ) div q dx dt

Ibdry =

t2
∫

t1

∫

∂Ω

(

I
∑

i=1

〈A∇ui, ν〉n[∂fr(uδ)]i

)

− 〈q, ν〉n fr(uδ) do dt (32)

Note that to obtain the term Iadv, the chain rule
∑I

i=1[∂fr(uδ)]i 〈∇ui, q〉n =
〈∇ fr(uδ), q〉n was applied to the advective term, and afterwards integration by
parts was performed.

The second term on the left side of (31) is equal to −Iadv. Hence it remains to
prove that

Ireact + Idiff + Ibdry ≤ c

t2
∫

t1

Fr(uδ(t)) dt + h(δ, u, r).

In (ii)-(iv) we will estimate the three terms.
(ii). For the reactive term Ireac we get with (25) and u+ =u (Lemma 2.1)

Ireac =

t2
∫

t1

∫

Ω

θrfr−1(uδ) 〈µ+lnuδ , SR(u)〉I dx dt.

We split the inner product into a main part and a remainder,

〈µ+lnuδ , SR(u)〉I = 〈µ+lnuδ , SR(uδ)〉I

+〈µ+lnuδ , SR(u)−SR(uδ)〉I . (33)

Following (19)-(20) with u replaced by uδ, the main part of (33) is nonpositive, i.e.,

〈µ+lnuδ , SR(uδ)〉I ≤ 0.
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Since θrfr−1(uδ)≥0 we obtain

Ireac ≤

t2
∫

t1

∫

Ω

θrfr−1(uδ) 〈µ+lnuδ, SR(u)− SR(uδ)〉I dx dt.

Expanding§ the term [SR(u)−SR(uδ)]i, we obtain a representation as a sum in
which each summand contains a factor us

k−us
k,δ, with s≥ 1. By using (8), we can

estimate this difference by a term |uk−uk,δ|= δ times a factor which depends on
the L∞-norm of uk, for δ ∈ (0, δ0]. After separation of the common factor δ the
remaining terms (products of the uk) are in C0(QT ) and bounded in L∞(QT ) for
fixed u, and δ → 0. The factor fr−1(uδ) is also bounded in L∞(QT ) for fixed u and
δ → 0. It remains to show that the product consisting of the factor δ and the factor
µ+ln uδ goes to zero in L1((t1, t2)×Ω)I for δ → 0 and fixed u. For this, it is sufficient
to show that δ ln(x+δ)→ 0 for δ → 0 uniformly w.r.t. x ∈ [0, ‖u‖L∞(QT )I ], which
is obviously true. Hence,

Ireac ≤ h(δ, u, r)
(δ→0)
−→ 0

for fixed solution u and fixed r.
(iii). The integrand of Idiff is transformed using first (25) and then the product
rule:

−
I
∑

i=1

〈A∇ui,∇[∂fr(uδ)]〉n

= −
I
∑

i=1

〈A∇ui, r∇[fr−1(uδ)(µi+lnuδ,i)]〉n

= −r

I
∑

i=1

(µi+lnuδ,i) 〈A∇ui,∇fr−1(uδ)〉n (34)

−rfr−1(uδ)

I
∑

i=1

〈A∇ui,∇(µi+lnuδ,i)〉n (35)

Applying the chain rule to ∇fr−1(uδ), the term (34) evaluates to

− r (r−1) fr−2(uδ)
I
∑

i=1

(µi+lnuδ,i) 〈A∇ui, (Du)T (µ+lnuδ)〉n

= − r (r−1) fr−2(uδ)
〈

A
[ I
∑

i=1

(µi+lnuδ,i)∇ui

]

, (Du)T (µ+lnuδ)
〉

n

= − r (r−1) fr−2(uδ) 〈A (Du)T (µ+lnuδ), (Du)T (µ+lnuδ)〉n ≤ 0.

(36)

The term (35) evaluates to

− r fr−1(uδ)

I
∑

i=1

n
∑

j,k=1

ajk ∂kui ∂jui

uδ,i
= − r fr−1(uδ)

I
∑

i=1

1

uδ,i
〈A∇ui,∇ui〉n ≤ 0.

§in the sense a1 · ... · as − ā1 · ... · ās =
s

P

l=1

a1 · ... · al−1 · (al−āl) · āl+1 · ... · ās
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Hence, Idiff ≤ 0.
(iv). The rest of the proof is devoted to the estimation of the boundary integral.
Exploiting the boundary conditions, the boundary term (32) reads

Ibdry =

I
∑

i=1

t2
∫

t1

∫

∂ΩF

(〈q, ν〉nui+bi)[∂fr(uδ)]i do dt−

t2
∫

t1

∫

∂Ω

fr(uδ) 〈q, ν〉n do dt

= −

t2
∫

t1

∫

∂Ω

fr(uδ) 〈q, ν〉n do dt +

I
∑

i=1

t2
∫

t1

∫

∂ΩF

bi rfr−1(uδ) (µi+lnui,δ) do dt

+
I
∑

i=1

t2
∫

t1

∫

∂ΩF

rfr−1(uδ) (µi+lnui,δ)ui 〈q, ν〉n do dt. (37)

Since µi+lnui,δ ≤ cui,δ ≤ cgi(ui,δ) ≤ cg(uδ), the inequality fr−1(uδ) (µi+lnui,δ) ≤
c fr−1(uδ) g(uδ) = c fr(uδ) holds. Hence, we can estimate the second term in (37)
by

I
∑

i=1

t2
∫

t1

∫

∂ΩF

bi rfr−1(uδ) (µi+lnui,δ) do dt ≤ c r

t2
∫

t1

∫

∂ΩF

fr(uδ) do dt

where the constant depends on the L∞(QT )I -norm of b and on the µi, but can be
chosen independently of δ∈ (0, δ0], u, r. Note that we used bi≥0 for this, since the
factor µi+lnui,δ has no sign.

In order to estimate the last term in (37), we state that

fr(uδ) = fr−1(uδ) g(uδ) = fr−1(uδ)

(

I
∑

i=1

(µi+lnui,δ − 1)(ui+δ) + e1−µi

)

.

By reordering the terms we obtain

fr−1(uδ)

I
∑

i=1

(µi+lnui,δ)ui

= fr(uδ) + fr−1(uδ)

(

I
∑

i=1

ui,δ − e1−µi

)

−
I
∑

i=1

δ (µi+lnui,δ)fr−1(uδ)

≤ 2 fr(uδ) + h(δ, u, r),

where we set h(δ, u, r) = max
(t,x)∈QT

(−
I
∑

i=1

δ (µi+lnui,δ)fr−1(uδ)) and where we used

fr−1(uδ)
∑I

i=1 uδ,i ≤ fr−1(uδ)g(uδ) = fr(uδ) in the last step. Note that h(δ, u, r) −→
0 for δ → 0 and u, r fixed. On the other hand,

fr−1(uδ)

I
∑

i=1

(µi + lnui,δ)ui ≥ fr−1(uδ)

I
∑

i=1

(µi + lnui)ui ≥ −c fr−1(uδ) ≥ −c fr(uδ)
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holds, using (17) in the last step. Both estimates together yield

fr−1(uδ)

∣

∣

∣

∣

∣

I
∑

i=1

(µi+lnui,δ)ui

∣

∣

∣

∣

∣

≤ c fr(uδ) + h(δ, u, r), h(δ, u, r)
(δ→0)
−→ 0

where the constant is independent of δ, u, r. Collecting the results and integrating,
we estimate (37) by

Ibdry ≤ c r

t2
∫

t1

‖fr(uδ)‖L1(∂Ω)dt + h(u, δ, r), h(u, δ, r)
(δ→0)
−→ 0. (38)

In the following we demonstrate that this boundary integral of fr(uδ) can be ab-
sorbed by the term (36) in Idiff and by an Fr(uδ)-term. We start by noting that
fr = (fr/2)

2, i.e,

‖fr(uδ)‖L1(∂Ω) = ‖fr/2(uδ)‖
2
L2(∂Ω), ‖fr(uδ)‖L1(Ω) = ‖fr/2(uδ)‖

2
L2(Ω),

and we apply (7) to fr/2(uδ). We obtain

‖fr(uδ)‖L1(∂Ω) = ‖fr/2(uδ)‖
2
L2(∂Ω)

≤ c ( ‖∇fr/2(uδ)‖L2(Ω)n ‖fr/2(uδ)‖L2(Ω) + ‖fr/2(uδ)‖
2
L2(Ω))

≤ c (ǫ ‖∇fr/2(uδ)‖
2
L2(Ω)n + Cǫ ‖fr/2(uδ)‖

2
L2(Ω))

= c



ǫ

∫

Ω

∣

∣∇fr/2(uδ)
∣

∣

2

n
dx + Cǫ

∫

Ω

fr(uδ) dx



 (39)

where c only depends on the domain, and where Cǫ =1/(4ǫ). The value of ǫ will be
chosen later. An evaluation of the gradient yields

∣

∣∇fr/2(uδ)
∣

∣

2

n
=

∣

∣

∣

r

2
f r

2
−1(uδ)(Duδ)

T (µ+lnuδ)
∣

∣

∣

2

n

=
r2

4
fr−2(uδ) |(Du)T (µ+lnuδ)|

2
n (40)

Putting (38)-(40) together we get

Ibdry ≤ h(δ, u, r) +
c Cǫr

θ0

t2
∫

t1

∫

Ω

θ fr(uδ) dx dt

+ǫ c
r3

4

t2
∫

t1

∫

Ω

fr−2(uδ) |(Du)T (µ+lnuδ)|
2
n dx dt (41)

where the c only depend on q, µ, b, Ω. The first integral equals

c Cǫr

θ0

t2
∫

t1

Fr(uδ) dt.
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Now let us choose ǫ = 2 a
cr . Hence, ǫ ≤ 4 a (r−1)

cr2 , since r ≥ 2. Now Cǫr = r
4ǫ only

depends on a, q, µ, b, Ω, and r, but not on δ, u. Due to this choice of ǫ, the second
of the two integrals of (41) can be absorbed by Idiff (see (36)); i.e., (31) holds. �

Following the strategy outlined in the end of Sec. 3.1 we prove Theorem 3.1:

Proof of Theorem 3.1. Let u ∈W 2,1
p (QT )I be a solution of Problem 2.2. Due

to Lemma 2.1, we know that u ≥ 0 on QT . Let δ > 0 be fixed and uδ := u+δ.
Let vδ∈C∞(QT )I be an approximation of uδ with respect to the W 2,1

p (QT ) norm.
Then vδ approximates uδ and u in L∞(QT ), and we can assume that vδ≥δ/2.

The left hand side of (27), with v = vδ, is an approximation of Fr(u(t2)) −
Fr(u(t1)). Exploiting the continuity of ∂fr : L∞

δ/2(QT )I → L∞(QT )I and of fr, the

right hand side of (27) (with v=vδ) is an approximation of (28). The term (28) is

estimated as seen in (31). The right hand side of (31) converges to c
∫ t2

t1
Fr(u(t)) dt

for δ → 0, exploiting again the continuity of Fr. Hence, for δ → 0 and vδ → uδ, we
get

Fr(u(t2))− Fr(u(t1)) ≤ cr2

t2
∫

t1

Fr(u(t)) dt

for every solution u with c independent of u, r. Applying Gronwall’s Lemma we
obtain the desired result. �

From the theorem we derive the following a priori estimate in L∞(0, T, Lr(Ω))
and so in Lr(QT ):

Lemma 3.2. Let the Assumptions 1-3 hold. Then there are constants c1, c2 > 0
such that for arbitrary solutions u ∈ W 2,1

p (QT ) of Problem 2.2 and arbitrary t ∈
[0, T ] and 2≤r< ρ) (ρ from Ass. 3),

‖u(t)‖Lr(Ω)I ≤ c1 ec2rt ‖g(u0)‖Lr(Ω) (42)

holds.

Proof. By application of Theorem 3.1 we get

∫

Ω

ui(t, x)r dx ≤

∫

Ω

[g(u(t, x))]r dx =

∫

Ω

fr(u(t, x)) dx ≤
1

θ0
Fr(u(t))

≤
1

θ0
ecr2t Fr(u0) =

1

θ0
ecr2t

∫

Ω

θ(0, x) g(u0(x))r dx. (43)

The last integral exists since g(u0) ∈ Lr(Ω)I follows from u0∈Lρ(Ω)I for r<ρ. �

Remark 3.2. If ∂ΩF =∅, then the exponent c2rt in (42) can be replaced by c2t/r,
which follows from the Remark 3.1 (a). Under this condition, and if we strengthen
the assumption on u0 (Ass. 3) to u0 ∈ L∞(Ω), we may pass to the limit r → ∞
to obtain an a priori estimate in ‖ · ‖L∞(QT ), (cf. eg. [8], Sec. 10.E.1). However,
we proceed directly to an a priori estimate in W 2,1

p (QT ) and apply a fixed point
theorem, a technique that can also be generalized to more complicated reactive
transport models such as couplings of PDEs and ODEs (see also [10, 13, 14]). Since
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we pick a fixed r, the behaviour of the bound (42) for r → ∞ is not essential for
what follows.

Lemma 3.3. Let the Assumptions 1-4 hold. Then there is a constant c > 0, de-
pending on the data of Problem 2.2 (possibly on T, p), but independent of u, such
that for an arbitrary solution u ∈W 2,1

p (QT )I of Problem 2.2

‖u‖W 2,1
p (QT )I ≤ c

holds.

Proof. Let u ∈ W 2,1
p (QT )I be a solution of Problem 2.2. The generalized Hölder

inequality and application of Lemma 3.2 for r = p s̄ (cf. Ass. 3) leads to the fact
that the right hand side of our problem, SR(u+(t)), meets an a priori bound in
Lp(QT )I :

‖SR(u+)‖Lp(QT )I ≤ c

From the assumption on the linear parabolic problem, Assumption 4, we obtain the
existence of a constant c with ‖u‖W 2,1

p (QT )I ≤ c. �

3.3. Existence and uniqueness of the solution

With the a priori estimate of Lemma 3.3 we can derive the existence of a solution
of Problem 2.2 by using a fixed point theorem, for example Schaefer’s fixed point
theorem (e.g., [3]). Let the assumptions 1-4 hold. The fixed point operator Z is
defined by

Z : W 2,1
p (QT )I −→W 2,1

p (QT )I , v 7−→ u = Z(v)

where u is the solution of the linear problem

∂tu + Lu = SR(v+) (44)

with the initial and boundary conditions of Problems 2.1,2.2.
Clearly, every fixed point of Z is a solution of Problem 2.2. Let us verify that

Z is well defined. For v ∈W 2,1
p (QT )I with p > n+1 the function v is contained in

C(QT )I , as stated in (5). Hence, v+∈C(QT )I and SR(v+)∈C(QT )I . In particular,
SR(v+)∈Lp(QT )I holds. Due to the linear parabolic theory (Ass. 4), the existence
of a unique solution u of problem (44) lying in W 2,1

p (QT )I follows.
The same steps show that the mapping Z is continuous and compact.

Theorem 3.2. Let the Assumptions 1-4 hold. Then there is a unique solution of
Problem 2.1.

Proof. Let us apply for example Schaefer’s fixed point theorem (see e.g. [3]).
Since we know already the compactness of the mapping Z, it remains to check that
the set {u∈W 2,1

p (QT ) | ∃λ∈ [0, 1] : u=λZ(u)} is bounded. This is tantamount to
prove an a priori bound for solutions of

∂tu + Lu = λSR(v+)

with initial and boundary values u0, b replaced by λu0, λb, λ∈ [0, 1]. It is obvious
that the estimates of Sec. 3.2, derived for λ=1, remain valid for λ∈ [0, 1]. Hence, we
obtain the existence of a fixed point, i.e., of a solution of Problem 2.2. This solution
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is, due to Lemma 2.1, obviously also a solution of Problem 2.1. Let us show now
that this solution of Problem 2.1 is unique.

Let u1, u2 ∈ W 2,1
p (QT )I be two solutions of Problem 2.1 and ũ = u1 − u2. We

know that the ui and all polynomial expressions in u are in L∞(QT ). We test the
equations for u1

i and u2
i with ũi on [0, t]× Ω and take the difference. Similar as in

the proof of Lemma 2.1 we obtain the energy estimate

∫

Ω

θ

2
ũi(τ, x)2 dx + c

∫

Qτ

|∇ũi|
2
n dx dt ≤

J
∑

j=1

|sij |

∫

Qτ

θ |Rj(u
1)−Rj(u

2)| |ũi| dx dt

where we have already exploited that ũ(0, x) = 0. It remains to consider the reactive
term. Expanding all the terms of Rj(u

1)−Rj(u
2) in the sense of Footnote §, every

term in Rj(u
1)−Rj(u

2) contains a factor of the structure (u1
l )

s−(u2
l )

s, which can
be estimated, using (8), by a factor |u1

l −u2
l |= |ũl| times a constant depending on

the L∞-norms of u1
l , u

2
l . So in the expansion of Rj(u

1) − Rj(u
2), every term can

be estimated by a constant Λli(u
1, u2) times |ũl|. Hence, the integrand is estimated

by a sum of terms of the shape Λli|ũl| |ũi|. By Cauchy’s inequality we get

‖ũi(τ)‖2L2(Ω) ≤ c

τ
∫

0

‖ũ‖2L2(Ω)I dt

where c depends on the data and on u1, u2. Summing up over i = 1, ..., I and ap-
plication of Gronwall’s lemma yields ‖ũ(t)‖2L2(Qτ )I ≤ 0 for all τ ∈ [0, T ]. �

3.4. Extensions

The requirement that the stoichiometric coefficients are not in the interval (0, 1)
(cf. Ass. 2) is only needed for the uniqueness proof and may be dropped if we are
only interested in the existence. To see this, note that for all s ∈ (0, 1], x, y ≥ 0,
|xs−ys|≤ |x−y|s holds, which can be used in the proof of Lemma 3.1, part (ii), to
estimate |us

k−us
k,δ| by δs, and since δs ln(x+δ)→ 0 for δ → 0, the rest of the proof

remains valid.

Finally, let us mention that the extension of the problem of Sec. 2.1 to Dirichlet
boundary conditions on a part ∂ΩD⊂∂Ω of the boundary is simple, if the boundary
value uD > 0 is constant and coincides with an equilibrium point of the reactive
system, i.e., ST lnuD = lnK holds. Then we may choose µ =− lnuD (cf. (16)).
Then the ΩD-part of Ibdry (cf. (32)) can be treated as follows. The estimation
of the advective part of the boundary integral, either by the data q, ∂Ω, uD, or as
in the proof of Lemma 3.1, is obvious. The diffusive term in the ΩD-part of Ibdry

can be written as the integral over terms ĥi(ui)[∂fr(uD +δ)]i = ĥi(ui)rfr−1(uD +
δ)(µi+ln(uD,i+δ)), and the factor µi + ln(uD,i+δ) = µi + lnuD,i + ln(1+δ/uD,i) =
ln(1+δ/uD,i) goes to zero for δ → 0, u fixed, i.e., it behaves like the term for the
flux boundary condition, h(δ, u, r), in Lemma 3.1 and can be treated in the same
way.
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4. Conclusion

An application of the Lyapunov technique to a different hydrogeoscientific kinetic
model, the three-species Monod model for biodegradation in porous media, can be
found in [14]. Since the nonlinearities of the Monod model are moderate, the usage
of g(u) as a Lyapunov function, i.e., the availability of an L∞(0, T ; L1(Ω))-estimate
for u lnu, is sufficient for that model to derive an a priori estimate. We modify this
approach by using fr(u) to obtain an L∞(0, T ; Lr(Ω))-estimate.

In [15] an estimate ∂tg(u)+Lg(u)≤ 0 for L =−∆ is established for full high-
order mass action kinetics, which allows the application of the maximum principle
to show (together with suitable boundary conditions) that the maximum of g(u) is
attained at t = 0, i.e., g(u) and so u can be bounded using g(u0). This procedure
seems less technical that the estimate of fr, with r > 1, in Sec. 3.2. However,
the argumentation is based on the assumptions of strict positivity of solutions,
on classical solutions, and homogeneous Neumann boundary conditions. We have
applied the Lyapunov technique with fr(u) with relaxed assumptions and have seen
that it is a viable alternative. In fact, in the model of Sec. 2-3 we may even start
with constant u0 ≡ 0 and concentrations entering the domain through the boundary,
with the maximum of g(u) taken at some t > 0, x∈ ∂Ω. Applications to extended
models with additional terms in the PDEs or additional ODEs coupled to the PDEs
([13, 14], [10] Sec. 3.4) are possible.

A restriction both of the fr(u)-method and of the method [15] for the moment
seems that they exploit that the diffusion/dispersion operator is the same for all
species ui. The reason, for the fr(u)-method is, that for r > 1 the estimate of the
diffusive term fails if the diffusion A is replaced by a species-dependent Ai. However,
note that the presented method still gives an L∞(0, T, L1(Ω)) a priori bound for
u and u lnu by using r = 1 also for species-dependent diffusion, since the crucial
term (36) is not present at all for r = 1 (provided (30) holds). The question if
the fr(u)-method may be extended to species-dependent diffusion is under current
investigation.
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