首页 | 官方网站   微博 | 高级检索  
     


Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors
Abstract:Heterojunction phototransistors(HPTs)with scaling emitters have a higher optical gain compared to HPTs with normal emitters.However,to quantitativel.y describe the relationship between the emitter-absorber area ratio(A_e/A_a)and the performance of HPTs,and to find the optimum value of A_e/A_a for the geometric structure design,we develop an analytical model for the optical gain of HPTs.Moreover,five devices with different A_e/A_a are fabricated to verify the numerical analysis result.As is expected,the measurement result is in good agreement with the analysis model,both of them confirmed that devices with a smaller A_e/A_a exhibit higher optical gain.The device with area ratio of 0.0625 has the highest optical gain,which is two orders of magnitude larger than that of the device with area ratio of 1 at 3 V.However,the dark current of the device with the area ratio of 0.0625 is forty times higher than that of the device with the area ratio of 1.By calculating the signal-to-noise ratios(SNRs) of the devices,the optimal value of Ae/Aa can be obtained to be 0.16.The device with the area ratio of0.16 has the maximum SNR.This result can be used for future design principles for high performance HPTs.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号