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1. Introduction

One of the mathematical foundations of neural networks is the convergence of training

algorithms. Some algorithms such as the perceptron rule[2] and the delta rule[3] have proved

convergent for linearly separable training patterns. Researchers have also attempted to obtain

the convergence of the online BP algorithm for nonlinear multilayer perceptrons. One of these

attempts is Gori & Maggini[1] in which they try to prove a convergence result for online BP

multilayer neural networks with linearly separable training patterns under certain assumptions.

Unfortunately, their paper contains a mathematical mistake that renders the proofs erroneous

[see the Appendix].

In [4] we have proved the convergence of online BP for single layer nonlinear perceptrons

with linearly separable training patterns. The aim of this paper is to generalize the method in

[4] to prove the convergence of online BP multilayer neural networks under some assumptions

which are similar to those in [1], but stronger than those in [4]. This generalization is necessary

since the BP multilayer neural network is used most-often in practice.

This paper is organized as follows. In the next section, we state some preliminaries. In

Section 3, we present some lemmas and the convergence result. An appendix is attached in the

end of the paper.

2. Preliminaries

Let the weight vectors of the networks be Wi = (wi1, · · · , wim)T ∈ Rm, i = 1, · · · , p,

where wij denotes the weight connecting the jth input neuron and ith hidden neuron; and
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V = (v1, · · · , vp)
T ∈ Rp where vi ∈ R+ (see Remark 1 below) is the weight between the ith

hidden neuron and the output neuron. For an input vector U = (u1, · · · , um)T ∈ Rm, the output

of the ith hidden neuron is

xi = f(ai), ai =

m∑

j=1

ujwij = W T
i U,

and the output of the network is

x0 = f(a0), a0 =

p∑

k=1

vkxk = V T H,

where H = (x1, · · · , xp)
T and f(x) : R → I (I = (−1, 1)) is a smooth sigmoidal function (for

example f(x) = tanh(x)). Such type of functions has the follow properties that will be employed

in our future proofs.

Property 1 limx→∞ f(x) = 1, limx→−∞ f(x) = −1.

Property 2 f(x) is an odd function: f(−x) = −f(x).

Property 3 limx→±∞ f ′(x) = 0.

Property 4 ∀M > 0, ∃GM > 0, s.t. f ′(x) ≥ GM for −M ≤ x ≤ M .

The following properties are direct consequences of the above properties:

Property 5 f ′(x) is an even function: f ′(−x) = f ′(x). (By property 2)

Property 6 f(x) is strictly increasing, so the inverse function f−1(x) exists. (By property 4)

The neural network is supplied with a set of training pattern pairs {ξq, Oq}%
q=1 ⊂ Rm×{±1}

which are arranged stochastically to form a sequence of input-target pairs {U k, dk}∞k=0 ⊂ Rm ×

{±1}, such that each pair {ξq, Oq} appears infinite times.

Definition 1 The set of training patterns is linearly separable, if there exist a vector A ∈ Rm

and a constant C1 > 0 such that

AT ξq

{
≥ C1, if Oq = 1,
≤ −C1, if Oq = −1.

(1)

The error function is chosen as

E(W, V ) =
1

2

%∑

q=1

(xq
0 − Oq)2.

So for a given constant ε > 0, the weights are updated at the kth step of training as follows:

W k+1
i =

{
W k

i if |dk − xk
0 | < ε,

W k
i + ηk

i (dk − xk
0)f ′(ak

i )f ′(ak
0)vk

i Uk, if |dk − xk
0 | ≥ ε,

(2a)
(2b)
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V k+1 =

{
V k, if |dk − xk

0 | < ε,

V k + η(dk − xk
0)f ′(ak

0)Hk, if |dk − xk
0 | ≥ ε,

(3a)
(3b)

where the learning rate ηk
i = µ/vk

i is variable, and µ and η are positive constants.

Since what we are concerned is the actually refined weight vector W k
i in (2b) and V k in

(3b), we can drop out those Uk and W k
i that satisfy (2a) and V k that satisfy (3a), and assume

every W k
i and V k satisfies (2b) and (3b) respectively. If we set Ũk = dkUk, then {Uk, dk}∞k=0

corresponds to {Ũk, 1}∞k=0. Let us still use Uk for Ũk. In these notations, the sequence of

input-target pairs becomes {Uk, 1}∞k=0 and according to (1) we have

AT Uk ≥ C1, k = 0, 1, · · · . (4)

And now Uk, W k
i and V k satisfy

1 − xk
0 ≥ ε, (5)

W k+1
i = W k

i + µ(1 − xk
0)f ′(ak

i )f ′(ak
0)Uk, (6)

V k+1 = V k + η(1 − xk
0)f ′(ak

0)Hk. (7)

In fact, by Properties 2 and 5, we see that the weight sequences {W k
i } and {V k} remain

unchanged under our simplification of symbols. In the sequel, we always assume (4)–(7).

For the training procedures (6) and (7), there are two cases to consider:

Case I. The training procedures (6) and (7) terminates in finite number of steps when the output

xq
0 satisfies |dq − xq

0| < ε for every training example ξq .

Case II. The training procedure (6) and (7) does not terminate in finite number of steps and

we have two infinite sequences {W k
i }

∞
k=0 and {V k

i }∞k=0 satisfying (6) and (7).

We shall proceed by a contradiction argument in the sequel to show that we must have Case

I to be valid. So until the last theorem we always assume Case II , or equivalently, assume the

existence of the infinite sequences {ak
0}

∞
k=0 and {ak

i }
∞
k=0 satisfying (5)–(7).

3. Convergence of the on-line BP

The following two assumptions will be used in this paper (cf. Remarks 1 and 2):

(III). vi ∈ R+.

(IV). For some i0, ‖Wi0‖ ≤ C (C is a given constant).

So ak
i0

= W T
i0

Uk is also bounded for any k. According to the assumption and Property 4 there

exists a constant C2 > 0, such that

f ′(ak
i0

) ≥ C2, ∀K = 1, 2, · · · . (8)

Lemma 1 Assume Case II, then there exist a subsequence {akn

0 }∞n=1 of {ak
0}

∞
k=0 in (7) and a

constant M, such that kn → ∞ as n → ∞, ak
0 ≥ M if ak

0 ∈ {akn

0 }, and ak
0 < M if ak

0 /∈ {akn

0 }.



454 Journal of Mathematical Research and Exposition Vol.26

Proof Using (7), we have

‖V k+1‖2 = ‖V k + η(1 − xk
0)f ′(ak

0)Hk‖2

= ‖V k‖2 + 2η(1 − xk
0)f ′(ak

0)ak
0 + η2(1 − xk

0)2f ′(ak
0)2‖Hk‖2.

Notice that 1 − xk
0 , f ′(ak

0) and ‖Hk‖ are positive and bounded for arbitrary k. Thus if

ak
0 < −M1, for a sufficiently large positive number M1, there holds

2η(1 − xk
0)f ′(ak

0)ak
0 + η2(1 − xk

0)2f ′(ak
0)2‖Hk‖2 < 0,

and hence

‖V k+1‖2 < ‖V k‖2. (9)

We now prove that ak
0 → −∞ is impossible. We proceed by contradiction. Assume to the

contrary that ak
0 → −∞ does hold, then ∀M2 ≥ M1, ∃K > 0, such that ak

0 < −M2 ≤ −M1

for k > K. Noticing (9), we have ‖V k+1‖2 < ‖V k‖2 when k > K, that is, V k is bounded.

So ak
0 = (V k)T Hk is also bounded. But this violates the assumption that ak

0 → −∞. Thus

ak
0 6→ −∞.

The above discussion indicates that {ak
0}

∞
k=0 has an infinite subsequence that is bounded

below. Hence there exist a constant M and a subsequence {akn

0 }∞n=1 such that every ak
0 which

satisfies ak
0 ≥ M is included in this subsequence. 2

Lemma 2 There exists a constant Mε > 0 depending on the constant ε in (5), such that

ak
0 ≤ Mε, ∀k = 1, 2, · · · .

Proof By the weight updating rule, the weight vector W k
i is refined if and only if 1 − xk

0 =

1 − f(ak
0) ≥ ε. Therefore, ak

0 ≤ Mε = f−1(1 − ε) > 0. 2

For the weight vector subsequence {W kn

i }∞n=1 corresponding to {akn

0 }∞n=1, we have

Lemma 3 Assume Case II and (III) (IV), then there exists a constant C4 > 0 such that

AT W
kn+1

i ≥ AT W k1

i + C4n, ∀n = 1, 2, · · · . (10)

Proof Left-multiplying both sides of (6) by A and noticing (4), (5) and (8), we derive

AT W k+1
i = AT W k

i + µ(1 − xk
0)f ′(ak

i )f ′(ak
0)AT Uk ≥ AT W k

i + C3f
′(ak

0), (11)

where C3 = µεC1C2. If k ∈ /{kn}
∞
n=1, because f ′(ak

0) > 0, there holds

AT W k+1
i > AT W k

i . (12)

If k ∈ {kn}
∞
n=1, for example k = kn, we conclude from Property 4 and M ≤ akn

0 ≤ Mε that

f ′(akn

0 ) ≥ Gmax{|M |,Mε}. Then (11) implies

AT W kn+1
i ≥ AT W kn

i + C4, (13)
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where C4 = C3Gmax{|M |,Mε}. It follows from (12) and (13) that

AT W
kn+1

i > AT W
kn+1−1
i > · · · > AT W kn+1

i ≥ AT W kn

i + C4. (14)

This immediately results in (10). 2

Now, we are in a position to present our main result.

Theorem Assume (III) and (IV), then the training procedures (6) and (7) converges in finite

iteration steps.

Proof Suppose to the contrary that Case II is right. Then {W kn

i0
}∞n=1 satisfies (10) and ‖W kn

i ‖ ≤

C (C is the constant in (IV)). By the Schwartz inequality, there holds

‖A‖ ≥
AT W

kn+1

i0

‖W
kn+1

i0
‖

≥
AT W k1

i0
+ C4n

C
→ ∞, n → ∞,

leading to a contradiction. So Case I must be true, that is, the online BP algorithms (6) and (7)

must converge in finite number of iteration steps. 2

Remark 1 The assumption vi ∈ R+: As pointed out in [1], vi ∈ R+ can be reasonably obtained

by an inversion of the sign of Wi.

Remark 2 The boundedness of ‖Wi‖: This assumption is restrictive in theory, but is naturally

adopted in practice and numerical experiment. Usually the larger values of ‖Wi‖ are difficult or

expensive to implement by hardware. So when ‖Wi‖ → ∞, we normally terminate the process

of the algorithm and start from another initial value W 0
i .

Appendix: An error in [1]

The following estimate ((17) in Lemma 2 of [1]) plays a central role in the proof in [1]:

‖Wi(K)‖2 ≤ ‖Wi(0)‖2 +

K−1∑

k=0

µ2
i (W (k), kmodQ) · y2

i (W (k), V (k), kmodQ)‖Ub(kmodQ)‖2.

But this is not correct. Actually, based on the triangular inequality, for any a, b and c ∈ Rm, if

a = b + c, then ‖a‖ ≤ ‖b‖+ ‖c‖. So using (9) in [1]

Wi(k + 1) = Wi(k) − µi(W (k), kmodQ) · yi(W (k), V (k), kmodQ)Ub(W (k), kmodQ),

we can only obtain for instance

‖Wi(K)‖ ≤ ‖Wi(0)‖ +

K−1∑

k=0

µi(W (k), kmodQ) · |yi(W (k), V (k), kmodQ)|‖Ub(kmodQ)‖,

but not (17) of [1]. There are no obvious ways to correct this error in the framework of [1].
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