首页 | 官方网站   微博 | 高级检索  
     


Solid‐state 13C, 15N and 29Si NMR characterization of block copolymers with CO2 capture properties
Authors:Faiz Ullah Shah  Farid Akhtar  Muhammad Saif Ullah Khan  Zareen Akhter  Oleg N Antzutkin
Affiliation:1. Chemistry of Interfaces, Lule? University of Technology, Lule?, Sweden;2. Division of Material Science, Lule? University of Technology, Lule?, Sweden;3. Department of Chemistry, Quaid‐i‐Azam University, Islamabad, Pakistan
Abstract:Natural abundance solid‐state multinuclear (13C, 15N and 29Si) cross‐polarization magic‐angle‐spinning NMR was used to study structures of three block copolymers based on polyamide and dimethylsiloxane and two polyamides, one of which including ferrocene in its structure. Assignment of most of the resonance lines in 13C, 15N and 29Si cross‐polarization magic‐angle‐spinning NMR spectra were suggested. A comparative analysis of 13C isotropic chemical shifts of polyamides with and without ferrocene has revealed a systematic shift towards higher δ ‐values (de‐shielding) explained as the incorporation of paramagnetic ferrocene into the polyamide backbone. In addition, the 13C NMR resonance lines for ferrocene‐based polyamide were significantly broadened, because of paramagnetic effects from ferrocene incorporated in the structure of this polyamide polymer. Single resonance lines with chemical shifts ranging from 88.1 to 91.5 ppm were observed for 15N sites in all of studied polyamide samples. 29Si chemical shifts were found to be around ?22.4 ppm in polydimethylsiloxane samples that falls in the range of chemical shifts for alkylsiloxane compounds. The CO2 capture performance of polyamide‐dimethylsiloxane‐based block copolymers was measured as a function of temperature and pressure. The data revealed that these polymeric materials have potential to uptake CO2 (up to 9.6 cm3 g?1) at ambient pressures and in the temperature interval 30–40 °C. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:block copolymers  NMR characterization  CO2 capture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号