首页 | 官方网站   微博 | 高级检索  
     


Capillary electrophoretic enantioseparation of basic drugs using a new single‐isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism
Authors:Yongjing Liu  Miaoduo Deng  Jia Yu  Zhen Jiang  Xingjie Guo
Abstract:A novel single‐isomer cyclodextrin derivative, heptakis {2,6‐di‐O‐3‐(1,3‐dicarboxyl propylamino)‐2‐hydroxypropyl]}‐β‐cyclodextrin (glutamic acid‐β‐cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid‐β‐cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused‐silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5–4.0) containing 0.5–4.5 mM glutamic acid‐β‐cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid‐β‐cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid‐β‐cyclodextrin was investigated using the semi‐empirical Parametric Method 3.
Keywords:Capillary electrophoresis  Enantioseparation  Glutamic acid‐cyclodextrin  Semi‐empirical Parametric Method 3
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号