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Abstract: In this paper, necessary and sufficient conditions for equalities between
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. . -2 VT2V (I~P1j24,) T2y
a’y'(I — Px )y and &% under the general linear model, where 6% = E T ran kX

and «? is a known positive number, are derived. Furthermore, when the Gauss-Markov
estimators and the ordinary least squares estimators are identical, we obtain a simple

equivalent coudition.
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1. Introduction

This paper adopts the following notations:

Let M,,, denote the set of m X n real matrices, S, be the subset of M, , consisting
of symmetric matrices, and 52 be the subset of $, consisting of nonnegative definite
matrices. For A, B € M, ,,, we will write A > B whenever A~ B € S2. Given 4 € M, .,
the symbols A’, R(A), rankA, A~ will stand for the transpose, the range, the rank, and
the generalized inverse, respectively, of A. R*(4) will stand for the orthocomplement to
R(A). Let P denote the orthogonal projector matrix onto R(A). The symbols E(y) and
D(y) will stand for the mean and the variance respectively, of random vector y.

In recent years, the study of robustness of a statistical inference has become a very
popular topic. Huber!®! gave a solid foundation of the concept of robustness from both the
theoretical and the applied statistical viewpoints. Rousseeuw and Leroyl® examined the
properties of robustness in the linear regression case. Some robust properties of ordinary
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least squares estimators in linear models are also investigated. For example, we consider
two linear models, denoted by

y=XB+e, E(e)=0, D(e)= 0L, (L)

y=XB+e, E(e)=0, D(e) = 0o?%, (1.2)

where y is an n X 1 observable random vector, X € M,,, is a non-null known matrix with
rankX = r < p, B € Mp; is an unknown parametric vector, o2 is a unknown positive
scalar, £ € SZ is a known matrix.
It is well known that GME, OLSE of the expectation vector are expressible as X3 and
X4, respectively, with
B=(X'TH*X)*X'Tty (1.3)

and
B=(X'X) X', (1.4)

and necessary and sufficient conditions for equalities between GME and OLSE are given
by many statisticians. For general background and bibliography see [1],[2],[7] and [12].

It is well known that 62 and &2 are minimum norm quadratic unbiased estimator of o2
in model (1.1) and (1.2) (see also [8]), respectively, where 62 = nir(y—Xﬁ)’(y—Xﬁ), % =
m(y—X B YTH(y—-X ,5) Kruskall® showed that necessary and sufficient condition
for 4% to equal &% when X,B = X holds is that ¥ is the identity operator on RL(X).
Zhang, Luo and Qiul'Y) considered that necessary and sufficient condition for &% to equal
3% when ¥ € M, is a positive and symmetric matrix.

In this paper, we mainly establish that necessary and sufficient conditions for a(y —
XB)(y — XB) to coincide with 52 of o2, As a result, works by Kruskall’} and Zhang, Luo

and Qiul" are extended.

2. Main results

To prove Theorem 2.1, we introduce the following three lemmas at first without proofs

[8,10].

Lemma 2.1 For A, B € M,,,, the following statements are equivalent:
(1) Py = Py,
(2) R(A) = R(B).

Lemma 2.2 Let A € M, ,.,B € M, such that R(B) C R(A), then
P4 — Pg is the orthogonal projector onto R(A) N R(B*')

Lemma 2.3 For A, B € §,,, the following statements are equivalent:
(1) y'Ay = y'By for ally € R",
(2) A= B.

Theorem 2.1 In model (1.2), the following statements are equivalent:
(1) a*(y— XB)(y — XB) = &%
(2) a®fa(I — Px)Z is idempotent;
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(3) a®>faX =XB1X'+ XB,Z' + ZByX'+ ZB3Z'. (2.1)
Here Z = X* is the matrix with maximum rank among all matrices which satisfy X'X* =
0, fa = rank(T) — rankX, By, B, and Bj are arbitrary symmetric matrices such that
T € SZ, and ZB3Z' is the orthogonal projector satisfying (ZBsZ')(ZB3X') = ZB»X'.

Proof Since T € S;?, there exists unique T? ¢ SZ such that T = Tz T3 (see e.g.
Theorem 7.2.6 in [3]). In fact, by Lemma 2.3 (1) holds if and only if

a2 fAT3(I - Px)T% = T5(T* - T*X(X'T*X)* X'TH)Ts = Pr— Py, ,  (22)

and by Lemma 2.2, we obtain Pr — Pri 2+ x is the orthogonal projector onto

R(T)n RY(T?*X) = R(T7X1).
Note that . l |

R(T3(I - Px)T2) = R(T:X1).
So by Lemma 2.1, (1) holds if and only if

azfAT;‘(I — Px )T% is idempotent,

which leads to

o' fA2T3(I — Px)T(I — Px)T% = a>f4T5(I — Px)T3,

or equivalently,
a®fa(I — Px)T is idempotent,
a®fa(I — Px)% is idempotent.

This completes the proof of (1) <= (2).
It follows from a?f4¥ € SZ that there exists a matrix Q € M, ,, such that a’f4¥ =
QQ’', Q can be decomposed as
Q= XU, + ZU,,

where U; and U, are some matrices. This gives
a’fa¥ = XB1 X'+ XB,Z' + ZBy X'+ ZB3Z',
where By = U, U], By = U1U;, B3 = U,U}. Since
(I — Px)a®faS(I - Px)a’faZ(I - Px) = (I — Px)a®foS(I ~ Px),

we have
ZB3Z' = ZU,U,2'

is )the orthogonal projector onto R(ZU,), and (2B32')(ZB3X') = ZB,X'. This proves
(2) = (3)
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Conversely, noting that
(ZB32')(Z2B,X') = ZB, X',
the part of (3) = (2) is obvious. O

Theorem 2.2 In model (1.2), If X3 = X B holds, then the following statements are
equivalent:

(1) o*(y - XBY(y - XB) = &2,

(2} a®fa(I — Px)E is the orthogonal projector onto R(SX1);

(3) a®f4S =XB, X'+ ZB37,
where B; and B3 are defined as before.

Proof Since Xﬁ = X3, we have
(I - Px)Z(I - Px) = (I - Px)T = £(I — Pyx), (2.3)

which leads to
XB,Z' = ZByX' = 0.

Therefore (2.1) reduces to (3). The part of (1)<=> (3) is easily verified. By Theorem 2.1,
we have
a®fa(I — Px)E is idempotent,

and
a’fa(I — Px)E = a® fa(I — Px)E(I - Px)

is also symmetric. Hence, (2) holds, this completes the equivalence between (1) and (2).
a

Corollary 2.1 In model (1.2), if My is the orthogonal projector onto R(ZX1), then
XB=Xp and (y- XB)(y - XB) = 2.

Proof From Theorem 2.2, the proof is trivial.

Remark When ¥ € M,,,, is a positive and symmetric matrix, we have U; and U; are the
column full rank matrix. Hence conditions (2) and (3) of Theorem 2.1 are equivalent to
“a?(n — r)T is a generalized inverse of (I — Px)” and “a*(n — r)T = X B, X'+ XB,Z' +
ZByX' + I — Px”, respectively, which lead to Zhang, Luo and Qiu’s Theorem 2.1 in [11].
Similarly, other results are extended.
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