首页 | 本学科首页   官方微博 | 高级检索  
     

石墨相氮化碳纳米管的合成及光催化产氢性能
引用本文:郑云,王博,王心晨. 石墨相氮化碳纳米管的合成及光催化产氢性能[J]. 影像科学与光化学, 2015, 33(5): 417-425. DOI: 10.7517/j.issn.1674-0475.2015.05.417
作者姓名:郑云  王博  王心晨
作者单位:福州大学 化学学院 能源与环境光催化国家重点实验室, 福建 福州 350002
基金项目:国家重点基础研究发展规划973项目(2013CB632405)、国家自然科学基金资助项目(21425309和21173043)和高等学校博士学科点专项科研基金(20133514110003)资助
摘    要:通过硬模板法,采用氰胺前驱物和二氧化硅纳米管(SiO2-NTs)模板,合成石墨相氮化碳纳米管(CN-NTs)光催化剂。采用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氮气吸附/脱附测试、紫外可见漫反射光谱(UV-Vis DRS)、荧光光谱、热重分析(TGA)等手段对CN-NTs催化剂的结构与性能进行表征。结果表明,CN-NTs的化学组成是石墨相氮化碳(g-C3N4),形貌为均匀的纳米管,且是介孔材料。与体相氮化碳(B-CN)和介孔石墨相氮化碳(mpg-CN)相比,CN-NTs的光吸收带边蓝移到440 nm,荧光发射谱的峰强减弱。在可见光(λ>420 nm)照射下,CN-NTs具有较高的光催化分解水活性,产氢速率为58 μmol/h,且表现出良好的光催化活性稳定性和化学结构稳定性。研究结果表明纳米管状结构能有效促进g-C3N4半导体激子解离,提高光生电子-空穴的分离效率,进而显著优化g-C3N4的光催化产氢性能。

关 键 词:石墨相氮化碳  纳米管  硬模板  光催化  氢能  
收稿时间:2015-07-01

Graphitic Carbon Nitride Nanotubes: Synthesis and Photocatalytic Activity for Hydrogen Evolution
ZHENG Yun,WANG Bo,WANG Xinchen. Graphitic Carbon Nitride Nanotubes: Synthesis and Photocatalytic Activity for Hydrogen Evolution[J]. Imaging Science and Photochemistry, 2015, 33(5): 417-425. DOI: 10.7517/j.issn.1674-0475.2015.05.417
Authors:ZHENG Yun  WANG Bo  WANG Xinchen
Affiliation:State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, Fujian, P. R. China
Abstract:Graphitic carbon nitride nanotubes (CN-NTs) photocatalyst has been synthesized by a hard-template method by using cyanamide as a precursor and silica nanotubes (SiO2-NTs) as a hard template. The structure and properties of CN-NTs catalyst are characterized by the techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen absorption/desorption experiment, ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS), fluorescence spectra and thermogravimetric analysis (TGA). As demonstrated by the experimental results, CN-NTs possess the chemical structure of graphitic carbon nitride (g-C3N4) and the morphology of uniform nanotubes, and belong to mesoporous materials. Compared with the bulk carbon nitride (B-CN) and the mesoporous graphitic carbon nitride (mpg-CN), the optical absorption band edge of CN-NTs blue-shifts to 440 nm, and the peak intensity of the fluorescence emission spectra for CN-NTs reduces. With the visible light irradiation (λ>420 nm), CN-NTs show an outstanding photocatalytic water splitting activity with the hydrogen evolution rate of 58 μmol/h, and also demonstrate excellent stability in photocatalytic activity and chemical structure. The investigation results indicate that the nanotube structure effectively promotes the exciton separation of g-C3N4 semiconductor, and improves the separation efficiency of photogenerated electrons and holes, thus remarkably optimizing the photocatalytic activity of g-C3N4 toward hydrogen evolution.
Keywords:graphitic carbon nitride  nanotube  hard template  photocatalysis  hydrogen energy  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《影像科学与光化学》浏览原始摘要信息
点击此处可从《影像科学与光化学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号