首页 | 官方网站   微博 | 高级检索  
     

利用钟跃迁谱线测量超稳光学参考腔的零温漂点
引用本文:李婷,卢晓同,周驰华,尹默娟,王叶兵,常宏.利用钟跃迁谱线测量超稳光学参考腔的零温漂点[J].物理学报,2021(7):106-111.
作者姓名:李婷  卢晓同  周驰华  尹默娟  王叶兵  常宏
作者单位:中国科学院国家授时中心;中国科学院大学天文与空间科学学院
基金项目:国家自然科学基金(批准号:11803042,61775220);国家重点研发计划(批准号:2016YFF0200201);中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004);中国科学院青年创新促进会(批准号:2019400)资助的课题.
摘    要:在87Sr光晶格钟实验系统中,通过将自由运转的698 nm激光频率锁定在由超低膨胀系数的玻璃材料构成的超稳光学参考腔上,从而获得短期频率稳定性较好的超稳窄线宽激光.超稳光学参考腔的腔长稳定性决定了最终激光频率的稳定度.为了降低腔长对温度的敏感性,使激光频率具有更好的稳定度和更小的频率漂移,利用锶原子光晶格钟的钟跃迁谱线,测量了698 nm超稳窄线宽激光系统中超稳光学参考腔的零温漂点.通过对钟跃迁谱线中心频率随温度的变化曲线进行二阶多项式拟合,得到698 nm超稳窄线宽激光系统的零温漂点为30.63℃.利用锶原子光晶格钟的闭环锁定,测得零温漂点处698 nm超稳窄线宽激光系统的线性频率漂移率为0.15 Hz/s,频率不稳定度为1.6×10–15@3.744 s.

关 键 词:超稳光学参考腔  频率漂移  钟跃迁谱线  零温漂点

Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum
Li Ting,Lu Xiao-Tong,Zhou Chi-Hua,Yin Mo-Juan,Wang Ye-Bing,Chang Hong.Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum[J].Acta Physica Sinica,2021(7):106-111.
Authors:Li Ting  Lu Xiao-Tong  Zhou Chi-Hua  Yin Mo-Juan  Wang Ye-Bing  Chang Hong
Affiliation:(Key Laboratory of Time and Frequency Primary Standards of Chinese Academy of Sciences,National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China;School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract:In an experimental system of 87Sr atomic optical lattice clock,the free-running 698 nm diode laser is locked in an ultra-stable optical reference cavity to obtain the ultra-stable narrow linewidth laser with good short-term frequency stability.The ultra-stable optical reference cavity,which is usually composed of glass material doped with titanium dioxide for ultra-low thermal expansion coefficient and two highly reflective fused quartz mirrors,is called ULE cavity.The cavity length is prone to being affected by mechanical vibration,temperature change,airflow,etc.The stability of the cavity length determines the stability of the final laser frequency.Near the room temperature,there exists a special temperature point for the ultra-low expansion glass material,at which temperature its thermal expansion coefficient becomes zero,which is called the zero-crossing temperature.At the zero-crossing temperature,the length of the ULE cavity is not sensitive to the temperature fluctuation,reaching a minimum value,and the laser locked to the ULE cavity has a minimum frequency drift.In order to reduce the influence of temperature on the laser frequency instability,the zero-crossing temperature of the ultra-stable optical reference cavity of 698 nm ultra-stable narrow linewidth laser system is measured by using the clock transition spectrum of the strontium atomic optical lattice clock.The frequency drift and frequency instability of the 698 nm ultra-stable narrow linewidth laser system at zero-crossing temperature are measured by using the change of the in-loop locked clock frequency of strontium atomic optical lattice clock.By scanning the atomic clock transition frequencies at different temperatures,the clock transition spectra at different temperatures are obtained.The second order polynomial fitting of the central frequency of the clock transition spectrum with the change curve of temperature is carried out,and the zero-crossing temperature of the 698 nm ultra-stable narrow linewidth laser system ULE cavity is measured to be 30.63℃.At the zero-crossing temperature,the 698 nm ultra-stable narrow linewidth laser frequency is used for in-loop locking of 87Sr atomic optical lattice clock.The linear drift rate of the ULE cavity in the 698 nm ultra-stable narrow linewidth laser system is measured to be 0.15 Hz/s,and the frequency instability of the 698 nm ultra-stable narrow linewidth laser system is 1.6×10–15 at an average time of 3.744 s.The determination of ULE cavity zero-crossing temperature for the 698 nm ultra-stable narrow linewidth laser system is of great significance in helping to not only improve the instability of the laser system,but also increase the instability of 87Sr optical lattice clock system.In the future,we will improve the temperature control system of the ULE cavity in the 698 nm clock laser system,enhancing the temperature control accuracy of the ULE cavity and reducing the measurement error,thus achieving a more accurate zero-crossing temperature and further improving the frequency instability of the 698 nm ultra-stable narrow linewidth laser system.
Keywords:ultra-stable optical reference cavity  frequency drift  clock transition spectra  zero-crossing temperature
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号