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Abstract

An autonomous stage-structured competitive systems with toxic effect is
investigated in this paper. Sufficient conditions which guarantee the global
attractivity of the system and the extinction of the partial species are obtained,
respectively. Our results supplement and compliment one of the main results
of Liu and Li [Global stability analysis of a nonautonomous stage-structured
competitive system with toxic effect and double maturation delays, Abstract
and Applied Analysis, Volume 2014, Article ID 689573, 15 pages].
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1 Introduction

Throughout this paper, we set:

fM = max
t∈[0,ω]

|f(t)|, fL = min
t∈[0,ω]

|f(t)|,

where f(t) is a ω-periodic continuous function.

It is well known that the effect of toxins on ecological systems is an important

issue from mathematical and experimental points of view [1, 2]. In [3], Maynard

Smith incorporated the effects of toxic substances in a two-species Lotka-Volterra

competitive system by considering that each species produces a substance toxic to

the other only when the other is present. The model takes the following form
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ẋ1(t) = x1(t)[K1 − a1x1(t)− b1x2(t)− c1x1(t)x2(t)],

ẋ2(t) = x2(t)[K2 − a2x2(t)− b2x1(t)− c2x1(t)x2(t)],
(1.1)

where x1(t) and x2(t) represent the densities of two competing species at time t,

respectively. K1 and K2 denote the birth rates of the first and second species, re-

spectively. a1 and a2 are the rates of intraspecific competition term for the first and

second species, respectively. b1 and b2 stand for the rates of interspecific competi-

tions, respectively. c1 and c2 represent the toxic inhibition rates for the first species

by the second species and vice versa.

However, the nonautonomous case is more realistic, according to system (1.1),

Li and Chen [4] considered the following nonautonomous system of differential

equations

ẋ1(t) = x1(t)[b1(t)− a11(t)x1(t)− a12(t)x2(t)− d1(t)x1(t)x2(t)],

ẋ2(t) = x2(t)[b2(t)− a21(t)x2(t)− a22(t)x1(t)− d2(t)x1(t)x2(t)].
(1.2)

They showed that under some suitable conditions, one species will be driven to

extinction while the other species stabilizes at a certain solution of a logistic equation.

For more papers in this direction, one could refer to [5,7], [24,25] and the references

cited therein.

Stage-structured models have been analyzed in many papers (see [8,12-20,23]).

Recently, Li and Chen [8] proposed the following periodic competitive stage-structured

Lotka-Volterra model with the effects of toxic substances

ẋ1(t) = b1(t− τ1) exp
(
−
∫ t

t−τ1

r1(s)ds
)
x1(t− τ1)− a11(t)x

2
1(t)

−a12(t)x1(t)x2(t)− d1(t)x
2
1(t)x2(t),

ẏ1(t) = b1(t)x1(t)− r1(t)y1(t)− b1(t− τ1) exp
(
−
∫ t

t−τ1

r1(s)ds
)
x1(t− τ1),

ẋ2(t) = b2(t− τ2) exp
(
−
∫ t

t−τ2

r2(s)ds
)
x2(t− τ2)− a21(t)x1(t)x2(t)

−a22(t)x22(t)− d2(t)x1(t)x
2
2(t),

ẏ2(t) = b2(t)x2(t)− r2(t)y2(t)− b2(t− τ2) exp
(
−
∫ t

t−τ2

r2(s)ds
)
x2(t− τ2),

(1.3)

where xi(t) and yi(t) (i = 1, 2) represent the densities of mature and immature

species at time t > 0, respectively. bi(t), aij(t), ri(t), di(t) (i, j = 1, 2) are all

nonnegative continuous and ω-periodic functions. They obtained a set of sufficient

conditions which ensure the extinction of the second species and the global attrac-

tivity of the first species.
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On the other hand, corresponding to system (1.1), the formulation of the al-

lelopathic interaction as c1x
2
1(t)x2(t), is the most simplest way to fulfill the concept

of allelopathic interaction in which one species release toxic substance to the other

species, and this effect is zero during the absence of affected species. And Chat-

topadhyay [9] demonstrated that an inhibitory allelopathic term has stabilizing effect

on the competitive coexistence of two competitive phytoplankton species. Recent-

ly, Bandyopadhyay [10] considered an allelopathic phytoplankton model where two

phytoplankton species compete for the access to the common nutrient with modified

allelopathic interaction term as suggested by Sole et al. [11]. This model is governed

by the following nonlinear ordinary differential equations

ẋ1(t) = x1(t)[K1 − a1x1(t)− b1x2(t)− cx1(t)x
2
2(t)],

ẋ2(t) = x2(t)[K2 − a2x2(t)− b2x1(t)],
(1.4)

where c denotes the rate of toxic inhibition by the first species and the second species

release toxic substance within the surrounding aquatic environment.

Stimulated by the works of Li and Chen [8] and Bandyopadhyay [10], Liu and

Li [12] proposed the following periodic stage-structured competitive systems with

toxic effect and double maturation delays

ẋ1(t) = α1(t)x2(t)− γ1(t)x1(t)− α1(t− τ1) exp
(
−
∫ t

t−τ1

γ1(s)ds
)
x2(t− τ1),

ẋ2(t) = α1(t− τ1) exp
(
−
∫ t

t−τ1

γ1(s)ds
)
x2(t− τ1)− β1(t)x

2
2(t)

−c1(t)x2(t)y2(t)− ρ(t)x22(t)y
2
2(t),

ẏ1(t) = α2(t)y2(t)− γ2(t)y1(t)− α2(t− τ2) exp
(
−
∫ t

t−τ2

γ2(s)ds
)
y2(t− τ2),

ẏ2(t) = α2(t− τ2) exp
(
−
∫ t

t−τ2

γ2(s)ds
)
y2(t− τ2)− β2(t)y

2
2(t)

−c2(t)x2(t)y2(t),

(1.5)

where x1(t) and x2(t) represent the densities of mature and immature species 1

at time t > 0, respectively; y1(t) and y2(t) represent the densities of mature and

immature species 2 at time t > 0, respectively. αi(t), βi(t), ri(t) (i, j = 1, 2) and

ρ(t) are all nonnegative continuous and ω-periodic functions.

Concerned with the persistent property of system (1.5), they obtained the fol-

lowing result:

Theorem A Assume that

αL
1 β

L
2 > cM1 α

M
2 , αL

2 β
L
1 > cM2 α

M
1 (H0)

hold, then system (1.5) is permanent.
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Now we focus our attention on the autonomous stage-structured competition

system

ẋ1(t) = α1x2(t)− γ1x1(t)− α1e
−γ1τ1x2(t− τ1),

ẋ2(t) = α1e
−γ1τ1x2(t− τ1)− β1x

2
2(t)− c1x2(t)y2(t)− ρx22(t)y

2
2(t),

ẏ1(t) = α2y2(t)− γ2y1(t)− α2e
−γ2τ2y2(t− τ2),

ẏ2(t) = α2e
−γ2τ2y2(t− τ2)− β2y

2
2(t)− c2x2(t)y2(t)

(1.6)

together with the following initial conditions

xi(t) = φi(t) > 0, t ∈ (−τ, 0], i = 1, 2,

yi(t) = ψi(t) > 0, t ∈ (−τ, 0], i = 1, 2,
(1.7)

where τ = max{τ1, τ2}, αi, βi, γi (i = 1, 2) and ρ are all positive constants.

For the continuity of the initial conditions, it is required that

x1(0) =

∫ 0

−τ1

α1φ2(s)e
γ1sds, y1(0) =

∫ 0

−τ2

α2ψ2(s)e
γ2sds. (1.8)

As a direct corollary of Theorem A, for system (1.6), we have the following result.

Corollary A Assume that

α1β2 > c1α2, α2β1 > c2α1 (H′
0)

hold, then system (1.6) is permanent.

Condition (H′
0) is independent of τi, i = 1, 2, which seems very strange, since

one may be expected by introducing the stage structure of the species, the stage

structure could influence on the dynamic behaviours of the system. Now lets consider

the following example.

Example 1.1 Consider the following system

ẋ1(t) = 3x2(t)− x1(t)− 3e−2x2(t− 2),

ẋ2(t) = 3e−2x2(t− 2)− 2x22(t)− x2(t)y2(t)− 2x22(t)y
2
2(t),

ẏ1(t) = 2y2(t)− y1(t)− 2e−1y2(t− 1),

ẏ2(t) = 2e−1y2(t− 1)− y22(t)− x2(t)y2(t).

(1.9)

In this case, corresponding to system (1.6), one has

α1(t) = 3, γ1(t) = 1, β1(t) = 2, c1(t) = 1, ρ(t) = 2,

α2(t) = 2, γ2(t) = 1, β2(t) = 1, c2(t) = 1, τ1 = 2, τ2 = 1.

By simple computation, one can see that

α1β2 = 3 > 2 = c1α2, α2β1 = 4 > 3 = c2α1.



404 ANN. OF APPL. MATH. Vol.33

Clearly, condition (H′
0) holds, but numeric simulation (Figure 1) shows that in this

case species 1 will be driven to extinction.
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Figure 1: Dynamic behaviors of system (1.9) with
initial values (x1(θ), x2(θ), y1(θ), y2(θ))
= (0.7782, 0.3, 0.3793, 0.3) and (0.3891,
0.15, 0.8850, 0.7), θ ∈ (−2, 0], respectively.

The above numeric simulation shows that although condition (H′
0) holds, some

of the species in system (1.6) maybe driven to extinction. Then two interesting
issues are proposed:

1. If condition (H′
0) is not enough to ensure the permanence of system (1.6),

is it possible for us to find out some new sufficient conditions which ensure the
permanence of the system? Further, based on the persistent result, is it possible to
obtain sufficient conditions which ensure the global attractivity of the system?

2. Since numeric simulation shows that some of the species will be driven to
extinction, while Liu and Li [12] did not investigate the extinction property of system
(1.5), is it possible for us to obtain some sufficient conditions which ensure the
extinction of system (1.6).

The organization of this paper is as follows. In Section 2, we introduce some
useful lemmas. In Section 3, we study the global attractivity of system (1.6). In Sec-
tion 4, we investigate the extinction property of the system. In Section 5, numerical
simulations are presented to illustrate the feasibility of our main results.

2 Preliminaries
Now let us state several lemmas which will be useful in proving our main results.
Lemma 2.1[13] Consider the following equation

ẋ(t) = ax(t− δ)− bx(t)− cx2(t),

x(t) > 0, −δ ≤ t ≤ 0,

and assume that a, b, c > 0 and δ ≥ 0 are constants, then:
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(i) If a > b, then lim
t→+∞

x(t) = a−b
c ;

(ii) if a ≤ b, then lim
t→+∞

x(t) = 0.

Lemma 2.2[13] Consider the following equation

ẋ(t) = dx(t− δ)− ex2(t),

x(t) > 0, −σ ≤ t ≤ 0,

and assume that d, e > 0 and σ ≥ 0 are constants, then

lim
t→+∞

x(t) =
d

e
.

Lemma 2.3[21,22](Fluctuation Lemma) Let x(t) be a bounded differentiable func-
tion on (α,∞). Then there exist sequences γn → ∞, σn → ∞ such that

(i) ẋ(γn) → 0 and x(γn) → lim sup
t→+∞

x(t) = x as n→ ∞;

(ii) ẋ(σn) → 0 and x(σn) → lim inf
t→+∞

x(t) = x as n→ ∞.

Lemma 2.4[12] Solutions of system (1.6) with initial conditions (1.7) and (1.8)
are positive for all t > 0.

3 Global Attractivity
It follows from the first and the third equation of (1.6) that,

x1(t) =

∫ t

t−τ1

α1x2(s)e
γ1sds · e−γ1t, y1(t) =

∫ t

t−τ2

α1y2(s)e
γ2sds · e−γ2t.

Hence we only need to study x2(t) and y2(t), which directly implies the properties
of x1(t), y1(t). Therefore, in this paper, we consider the subsystem of system (1.6)
as follows

ẋ2(t) = α1e
−γ1τ1x2(t− τ1)− β1x

2
2(t)− c1x2(t)y2(t)− ρx22(t)y

2
2(t),

ẏ2(t) = α2e
−γ2τ2y2(t− τ2)− β2y

2
2(t)− c2x2(t)y2(t),

(3.1)

together with following initial conditions

x2(t) = φ2(t) > 0, y2(t) = ψ2(t) > 0, t ∈ (−τ, 0],

where τ = max{τ1, τ2}. Before stating the main results of this section, we introduce
a set of conditions

c1
β2

<
α1e

−γ1τ1

α2e−γ2τ2
<
β1
c2
, 0 < ρ <

3β2(β1β2 − c1c2)e
2γ2τ2

α2
2

, (H1)

α1e
−γ1τ1

α2e−γ2τ2
≤ c1
β2
,

α1e
−γ1τ1

α2e−γ2τ2
<
β1
c2
. (H2)
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Lemma 3.1 If (H1) holds, then system (3.1) has a unique interior positive
equilibrium E∗(x∗2, y

∗
2).

Proof From (18) and (22) in Liu and Li [12], for any ε > 0 enough small, there
exists a T such that for all t > T ,

x2(t) ≤
α1e

−γ1τ1

β1
+ ε, y2(t) ≤

α2e
−γ2τ2

β2
+ ε.

Hence, to investigate the positive equilibrium of system (3.1), it is enough to discuss
the equilibrium on the region

D =
{
(x2, y2)| 0 ≤ x2(t) ≤

α1e
−γ1τ1

β1
+ ε, 0 ≤ y2(t) ≤

α2e
−γ2τ2

β2
+ ε

}
.

The components of interior equilibrium point E∗(x∗2, y
∗
2) are given by

α1e
−γ1τ1x∗2 − β1(x

∗
2)

2 − c1x
∗
2y

∗
2 − ρ(x∗2)

2(y∗2)
2 = 0,

α2e
−γ2τ2y∗2 − β2(y

∗
2)

2 − c2x
∗
2y

∗
2 = 0,

(3.2)

which is equivalent to

x∗2 =
α2e

−γ2τ2 − β2y
∗
2

c2
,

and y∗2 is a positive real root of the equation

β2ρz
3 − α2e

−γ2τ2ρz2 + (β1β2 − c1c2)z + α1e
−γ1τ1c2 − α2e

−γ2τ2β1 = 0. (3.3)

To end the proof of Lemma 3.1, it is enough to show that (3.3) admits a unique

positive solution z ∈
(
0, α2e−γ2τ2

β2

)
. Let

f(z) = az3 + bz2 + cz + d, z ∈
(
0,
α2e

−γ2τ2

β2

)
, (3.4)

where a = β2ρ > 0, b = −α2e
−γ2τ2ρ < 0, c = β1β2 − c1c2 > 0, d = α1e

−γ1τ1c2 −
α2e

−γ2τ2β1 < 0. Note that

f ′(z) = 3az2 + 2bz + c.

From the second inequality of condition (H1)

∆ = 4b2 − 12ac = 4α2
2e

−2γ2τ2ρ2 − 12β2ρ(β1β2 − c1c2) < 0.

Also, f ′(0) = c > 0, hence f ′(z) > 0 as z ∈
(
0, α2e−γ2τ2

β2

)
. That is, f(z) is strictly

increasing in the interval
(
0, α2e−γ2τ2

β2

)
. Note that

f(0) = d < 0,
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f

(
α2e

−γ2τ2

β2

)
= β2ρ

(
α2e

−γ2τ2

β2

)3

− α2e
−γ2τ2ρ

(
α2e

−γ2τ2

β2

)2

+
(
β1β2 − c1c2

)α2e
−γ2τ2

β2
+ α1e

−γ1τ1c2 − α2e
−γ2τ2β1

= α2e
−γ2τ2β1 − c1c2

α2e
−γ2τ2

β2
+ α1e

−γ1τ1c2 − α2e
−γ2τ2β1

> 0.

Thus f(z) has one and only one solution in the interval
(
0, α2e−γ2τ2

β2

)
, so we can

obtain the existence and uniqueness of y∗2, that is, system (3.1) has a unique interior
positive equilibrium E∗(x∗2, y

∗
2).

Lemma 3.2 If (H1) holds, then system (1.6) has a unique interior positive
equilibrium E(x∗1, x

∗
2, y

∗
1, y

∗
2).

Theorem 3.1 Let (x2(t), y2(t))
T be any solution of system (3.1) with initial

conditions (3.2). Assume that the coefficients of system (3.1) satisfy condition (H1),
then the unique interior equilibrium E∗(x∗2, y

∗
2) of system (3.1) is globally attractive,

that is
lim

t→+∞
x2(t) = x∗2, lim

t→+∞
y2(t) = y∗2.

Proof By the first equation of system (3.1), we have

ẋ2(t) ≤ α1e
−γ1τ1x2(t− τ1)− β1x

2
2(t). (3.5)

From Lemma 2.2 and (3.5), there exists a T1 > 0 such that for sufficiently small
ε > 0 and t ≥ T1, we get

x2(t) ≤
α1e

−γ1τ1

β1
+ ε

def
= M

(1)
2 . (3.6)

Similarly, for the above ε > 0, from the second equation of system (3.1), it can be
obtained that

ẏ2(t) ≤ α2e
−γ2τ2y2(t− τ2)− β2y

2
2(t), for t ≥ T1. (3.7)

By virtue of Lemma 2.2, there exists a T2 ≥ T1 such that for the above ε > 0 and
t ≥ T2, it yields

y2(t) ≤
α2e

−γ2τ2

β2
+ ε

def
= M

(1)
4 . (3.8)

Furthermore, it follows from the first equation of system (3.1) that

ẋ2(t) ≥ α1e
−γ1τ1x2(t− τ1)− c1M

(1)
4 x2(t)−

(
β1 + ρ

(
M

(1)
4

)2)
x22(t). (3.9)

From Lemma 2.1 and (3.9), for the above ε > 0, there exists a T3 > T2 such that
for t ≥ T3, we get
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x2(t) ≥
α1e

−γ1τ1 − c1M
(1)
4

β1 + ρ
(
M

(1)
4

)2 − ε
def
= m

(1)
2 (3.10)

provided that

α1e
−γ1τ1 > c1M

(1)
4 . (3.11)

It follows from the second equation of system (3.1) that

ẏ2(t) ≥ α2e
−γ2τ2y2(t− τ2)− β2x

2
2(t)− c2M

(1)
2 y2(t). (3.12)

From Lemma 2.1 and (3.12), for the above ε > 0, there exists a T4 > T3 such that
for t ≥ T4, we get

y2(t) ≥
α2e

−γ2τ2 − c2M
(1)
2

β2
− ε

def
= m

(1)
4 (3.13)

provided that

α2e
−γ2τ2 > c2M

(1)
2 . (3.14)

According to the first equation of system (3.1), we get that

ẋ2(t) ≤ α1e
−γ1τ1x2(t− τ1)− c1m

(1)
4 x2(t)− (β1 + ρ

(
m

(1)
4

)2
)x22(t). (3.15)

From Lemma 2.1 and (3.15), for the above ε > 0, there exists a T5 > T4 such that
for t ≥ T5, we get

x2(t) ≤
α1e

−γ1τ1 − c1m
(1)
4

β1 + ρ
(
m

(1)
4

)2 +
ε

2

def
= M

(2)
2 (3.16)

provided that

α1e
−γ1τ1 > c1m

(1)
4 . (3.17)

According to the second equation of model system (3.1), we get that

ẏ2(t) ≤ α2e
−γ2τ2y2(t− τ2)− β2y

2
2(t)− c1m

(1)
2 x2(t). (3.18)

From Lemma 2.1 and (3.18), for the above ε > 0, there exists a T6 > T5 such that
for t ≥ T6, we get

y2(t) ≤
α2e

−γ2τ2 − c2m
(1)
2

β2
+
ε

2

def
= M

(2)
4 (3.19)

provided that

α2e
−γ2τ2 > c2m

(1)
2 . (3.20)

Furthermore, it follows from the first equation of system (3.1) that

ẋ2(t) ≥ α1e
−γ1τ1x2(t− τ1)− c1M

(2)
4 x2(t)−

(
β1 + ρ

(
M

(2)
4

)2)
x22(t). (3.21)
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From Lemma 2.1 and (3.21), for the above ε > 0, there exists a T7 > T6 such that
for t ≥ T7, we get

x2(t) ≥
α1e

−γ1τ1 − c1M
(2)
4

β1 + ρ
(
M

(2)
4

)2 − ε

2

def
= m

(2)
2 (3.22)

provided that

α1e
−γ1τ1 > c1M

(2)
4 . (3.23)

It follows from the second equation of system (3.1) that

ẏ2(t) ≥ α2e
−γ2τ2y2(t− τ2)− β2x

2
2(t)− c2M

(2)
2 y2(t). (3.24)

From Lemma 2.1 and (3.24), for the above ε > 0, there exists a T8 > T7 such that
for t ≥ T8, we get

y2(t) ≥
α2e

−γ2τ2 − c2M
(2)
2

β2
− ε

2

def
= m

(2)
4 (3.25)

provided that

α2e
−γ2τ2 > c2M

(2)
2 . (3.26)

It is easy to show that six inequalities (3.11), (3.14), (3.17), (3.20), (3.23) and (3.26)
hold if the first inequality of (H1) holds. Obviously

M
(2)
2 =

α1e
−γ1τ1 − c1m

(1)
4

β1 + ρ
(
m

(1)
4

)2 +
ε

2
<
α1e

−γ1τ1

β1
+ ε =M

(1)
2 ,

M
(2)
4 =

α2e
−γ2τ2 − c2m

(1)
2

β2
+
ε

2
<
α2e

−γ2τ2

β2
+ ε =M

(1)
4 ,

m
(2)
2 =

α1e
−γ1τ1 − c1M

(2)
4

β1 + ρ
(
M

(2)
4

)2 − ε

2
>
α1e

−γ1τ1 − c1M
(1)
4

β1 + ρ
(
M

(1)
4

)2 − ε = m
(1)
2 ,

m
(2)
4 =

α2e
−γ2τ2 − c2M

(2)
2

β2
− ε

2
>
α2e

−γ2τ2 − c2M
(1)
2

β2
− ε = m

(1)
4 .

(3.27)

Therefore
0 < m

(1)
2 < m

(2)
2 < x2(t) < M

(2)
2 < M

(1)
2 ,

0 < m
(1)
4 < m

(2)
4 < y2(t) < M

(2)
4 < M

(1)
4 , t ≥ T8.

(3.28)

Furthermore, four sequences will be obtained by repeating the discussion in this
manner, which are given as follows

M
(n)
2 =

α1e
−γ1τ1 − c1m

(n−1)
4

β1 + ρ
(
m

(n−1)
4

)2 +
ε

n
, M

(n)
4 =

α2e
−γ2τ2 − c2m

(n−1)
2

β2
+
ε

n
,

m
(n)
2 =

α1e
−γ1τ1 − c1M

(n)
4

β1 + ρ
(
M

(n)
4

)2 − ε

n
, m

(n)
4 =

α2e
−γ2τ2 − c2M

(n)
2

β2
− ε

n
.

(3.29)
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We claim that the sequences {M (n)
i } (i = 2, 4) are strictly decreasing as n increases

and the sequences {m(n)
i } (i = 2, 4) are strictly increasing as n increases. We prove

this claim. Firstly, from (3.28), we get

M
(2)
i < M

(1)
i , m

(2)
i > m

(1)
i , i = 2, 4.

Assume that our claim is true for n, so

M
(n)
i < M

(n−1)
i , m

(n)
i > m

(n−1)
i , i = 2, 4.

By a simple computation, we obtain that

M
(n+1)
2 =

α1e
−γ1τ1 − c1m

(n)
4

β1 + ρ
(
m

(n)
4

)2 +
ε

n+1
<
α1e

−γ1τ1 − c1m
(n−1)
4

β1 + ρ
(
m

(n−1)
4

)2 +
ε

n
=M

(n)
2 ,

M
(n+1)
4 =

α2e
−γ2τ2 − c2m

(n)
2

β2
+

ε

n+1
<
α2e

−γ2τ2 − c2m
(n−1)
2

β2
+
ε

n
=M

(n)
4 ,

m
(n+1)
2 =

α1e
−γ1τ1 − c1M

(n+1)
4

β1 + ρ
(
M

(n+1)
4

)2 − ε

n+1
>
α1e

−γ1τ1 − c1M
(n)
4

β1 + ρ
(
M

(n)
4

)2 − ε

n
= m

(n)
2 ,

m
(n+1)
4 =

α2e
−γ2τ2 − c2M

(n+1)
2

β2
− ε

n+1
>
α2e

−γ2τ2 − c2M
(n)
2

β2
− ε

n
= m

(n)
4 .

(3.30)

Therefore

0<m
(1)
2 <m

(2)
2 < · · ·<m(n)

2 <x2(t)<M
(n)
2 < · · ·<M (2)

2 <M
(1)
2 ,

0<m
(1)
4 <m

(2)
4 < · · ·<m(n)

4 <y2(t)<M
(n)
4 < · · ·<M (2)

4 <M
(1)
4 , t≥T4n.

(3.31)

Hence, the limits of M
(n)
i ,m

(n)
i , i = 2, 4, n = 1, 2, · · · exist. Denote that

lim
n→+∞

M
(n)
2 = x2, lim

n→+∞
M

(n)
4 = y2,

lim
n→+∞

m
(n)
2 = x2, lim

n→+∞
m

(n)
4 = y

2
.

Letting n→ +∞ in (3.29), we obtain

α1e
−γ1τ1x2 − β1(x2)

2 − c1x2y2 − ρ(x2)
2(y

2
)2 = 0 = α2e

−γ2τ2y
2
− β2(y2)

2 − c2x2y2,

α1e
−γ1τ1x2 − β1(x2)

2 − c1x2y2 − ρ(x2)
2(y2)

2 = 0 = α2e
−γ2τ2y2 − β2(y2)

2 − c2x2y2.

Note that (x2, y2) and (x2, y2) are positive solutions of (3.2), and

x2 < M
(1)
2 =

α1e
−γ1τ1

β1
+ ε, y2 < M

(1)
4 =

α2e
−γ2τ2

β2
+ ε.

By Lemma 3.1, (3.2) has a unique positive solution E∗(x∗2, y
∗
2) ∈ D. Hence, we

conclude that
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x2 = x2 = x∗2, y2 = y
2
= y∗2,

that is
lim

t→+∞
x2(t) = x∗2, lim

t→+∞
y2(t) = y∗2.

Therefore, the unique interior equilibrium E∗(x∗2, y
∗
2) of system (3.1) is globally at-

tractive.
Corollary 3.1 Let (x1(t), x2(t), y1(t), y2(t))

T be any solution of system (1.6)
with initial conditions (1.7). Assume that the coefficients of system (1.6) satisfy
inequality (H1), then the unique interior equilibrium E(x∗1, x

∗
2, y

∗
1, y

∗
2) of system (1.6)

is globally attractive, that is

lim
t→+∞

xi(t) = x∗i , lim
t→+∞

yi(t) = y∗i , i = 1, 2.

4 Extinction
Lemma 4.1 Let (x1(t), x2(t), y1(t), y2(t))

T be any solution of system (1.6) with
initial conditions (1.7). Assume that (H2) holds, then there exists an α > 0 such
that y2(t) ≥ α for all t ≥ 0.

Proof It follows from Lemma 2.3 that lim sup
t→+∞

x2(t) ≤ α1e−γ1τ1

β1
. Given ε1 =

1
2

(
α2e−γ2τ2

c2
− α1e−γ1τ1

β1

)
> 0, there exists a T ≥ 0 such that for t ≥ T

x2(t) ≤
α1e

−γ1τ1

β1
+ ε1 =

1

2

(α2e
−γ2τ2

c2
+
α1e

−γ1τ1

β1

)
.

So, for t ≥ T

ẏ2(t) = α2e
−γ2τ2y2(t− τ2)− β2y

2
2(t)− c2x2(t)y2(t)

≥ α2e
−γ2τ2y2(t− τ2)−

1

2

(
α2e

−γ2τ2 + c2
α1e

−γ1τ1

β1

)
y2(t)− β2y

2
2(t)

def
= Ay2(t− τ2)−By2(t)− Cy22(t).

Let u(t) be a solution of the following equation

u̇(t) = Au(t− τ2)−Bu(t)− Cu2(t)

with u(T + τ2) = y2(T + τ2). It follows from condition (H2) that

A−B =
1

2

(
α2e

−γ2τ2 − c2
α1e

−γ1τ1

β1

)
> 0.

From Lemma 2.2

lim
t→+∞

u(t) =
A−B

C

def
= α1 > 0.

Therefore, we obtain
y
2
= lim inf

t→+∞
y2(t) ≥ α1.
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Given ε2 = α1/2, there exists a T1 ≥ T such that

y2(t) ≥ y
1
− ε2 ≥ α1 − α1/2 ≥ α1/2, t ≥ T1.

Let α2 = min{y2(t) : 0 ≤ t ≤ T1} > 0 and α = min{α1/2, α2} > 0. It follows that
y2(t) ≥ α > 0 for all t ≥ 0. This completes the proof of Lemma 4.1.

Now we show that (H0) together with (H2) could lead to the extinction of the
first species, that is, in addition to (H0), with some additional restriction, then the
first species will be driven to extinction.

Theorem 4.1 Let (x1(t), x2(t), y1(t), y2(t))
T be any solution of system (1.6)

with initial conditions (1.7). Assume that (H0) and (H2) hold, then

lim
t→+∞

x1(t) = 0, lim
t→+∞

x2(t) = 0.

Proof By Lemma 2.4 we know that x2(t) and y2(t) are bounded and positive for
all t ≥ 0. Let x2 = lim sup

t→+∞
x2(t) and y

2
= lim inf

t→+∞
y2(t). From Lemma 4.1 we know

that y
2
≥ α > 0. Obviously x2 ≥ 0. To prove lim

t→+∞
x2(t) = 0, it suffices to show

that x2 = 0. In order to get a contradiction, we suppose that x2 > 0. According
to the Fluctuation lemma, there exist sequences γn → +∞, σn → +∞ such that
ẋ2(γn) → 0, ẏ2(σn) → 0, x2(γn) → x2 and y2(σn) → y

2
as n→ ∞.

It follows from the second equation of system (1.6) that

ẋ2(γn) ≤ α1e
−γ1τ1x2(γn − τ1)− β1x

2
2(γn)− c1x2(γn)y2(γn)

≤ α1e
−γ1τ1 sup

t≥γn−τ1

x2(t)− β1x
2
2(γn)− c1x2(γn) inf

t≥γn
y2(t).

By taking the limit of the above inequality as n→ +∞, we obtain the inequality

0 ≤ α1e
−γ1τ1x2 − β1x

2
2 − c1x2y2.

That is
α1e

−γ1τ1x2 ≥ β1x
2
2 + c1x2y2. (4.1)

From the fourth equation of system (1.6), by a similar argument as above, we obtain

α2e
−γ2τ2y

2
≤ β2y

2
2
+ c2x2y2. (4.2)

Multiplying (4.2) by −α1e−γ1τ1

α2e−γ2τ2
x2, we obtain

−α1e
−γ1τ1x2y2 ≥ −β2

α1e
−γ1τ1

α2e−γ2τ2
x2y

2
2
− c2

α1e
−γ1τ1

α2e−γ2τ2
x22y2. (4.3)

Multiplying (4.1) by y
2
and adding the corresponding inequality to (4.3), we obtain

0 ≥
(
β1 − c2

α1e
−γ1τ1

α2e−γ2τ2

)
x22y2 +

(
c1 − β2

α1e
−γ1τ1

α2e−γ2τ2

)
x2y

2
2
.
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That is (
c2
α1e

−γ1τ1

α2e−γ2τ2
− β1

)
x2 ≥

(
c1 − β2

α1e
−γ1τ1

α2e−γ2τ2

)
y
2
. (4.4)

From the first inequality in condition (H2) and (4.4), we have(
c2
α1e

−γ1τ1

α2e−γ2τ2
− β1

)
x2 ≥ 0. (4.5)

From the second inequality in condition (H2), we have

c2
α1e

−γ1τ1

α2e−γ2τ2
− β1 < 0. (4.6)

This together with (4.5) leads to x2 ≤ 0, which is a contradiction, then we obtain

lim
t→+∞

x2(t) = 0. (4.7)

Hence, for 0 < ε < α1e−γ1τ1

β1
sufficiently small, there exists a T1 > T such that

x2(t) ≤ ε. Then we get

x1(t) =

∫ t

t−τ1

α1x2(s)e
γ1sds · e−γ1t ≤ α1ε

∫ t

t−τ1

1

γ1
γ1e

γ1sds · e−γ1t

=
α1ε

γ1

(
1− e−γ1τ1

)
, t > T1 + τ1.

Setting ε→ 0, it follows that
lim

t→+∞
x1(t) = 0. (4.8)

This completes the proof of Theorem 4.1.

5 Examples
Example 5.1 Consider the following autonomous stage-structured competitive

systems with toxic effect and double maturation delays

ẋ1(t) = 3x2(t)− x1(t)− 3e−2x2(t− 2),

ẋ2(t) = 3e−2x2(t− 2)− 5x22(t)− x2(t)y2(t)− 2x22(t)y
2
2(t),

ẏ1(t) = 2y2(t)− y1(t)− 2e−1y2(t− 1),

ẏ2(t) = 2e−1y2(t− 1)− 4y22(t)− 2x2(t)y2(t).

(5.1)

In this case, corresponding to system (1.6)

α1 = 3, γ1 = 1, β1 = 5, c1 = 1, ρ = 2,

α2 = 2, γ2 = 1, β2 = 4, c2 = 2, τ1 = 2, τ2 = 1.

By simple computation, one can see that
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c1
β2

=
1

4
,

β1
c2

=
5

2
,

α1e
−γ1τ1

α2e−γ2τ2
≈ 0.5518,

3β2(β1β2 − c1c2)e
2γ2τ2

α2
2

≈ 399.0090.

Clearly, condition (H1) is satisfied. From Corollary 3.1, system (5.1) is globally
attractive. Numeric simulation (Figure 2) supports this findings.

time t
0 5 10 15 20 25 30 35

so
lu

tio
n 

0

0.1

0.2

0.3

0.4

0.5

0.6

x
1

x
2

y
1

y
2

Figure 2: Dynamic behaviors of system (5.1) with
initial values (x1(θ), x2(θ), y1(θ), y2(θ))
= (0.5188, 0.2, 0.0126, 0.01), (0.2594, 0.1,
0.3793,0.3)and(0.3891,0.15,0.1770,0.14),
θ ∈ (−2, 0], respectively.

Example 5.2 Now consider Example 1.1, in this case, one can easily check that

c1
β2

= 1,
β1
c2

= 2,
α1e

−γ1τ1

α2e−γ2τ2
≈ 0.5518.

Clearly, conditions (H′
0) and (H2) are satisfied. From Theorem 4.1, species 1 will be

driven to extinction. The example illustrates that (H′
0) is not sufficient condition

which guarantee the permanence of system (1.6).

6 Conclusion
In this paper, we consider an autonomous stage-structured competitive systems

with toxic effect. Theorem 3.1 shows that if the system without toxic substance is
globally attractive, and if the rate of toxic substance is restrict to some range such
that condition (H1) holds, then the toxic substance has influence on the the stability
property of the unique interior equilibrium of system (1.6). Theorem 4.1 shows that
although the condition (H′

0) holds, the first species still be driven to extinction if
additional condition (H2) holds.

One of the interesting issue is to find out the dynamic behaviors of system

(3.1) under the assumption ρ > 3β2(β1β2−c1c2)e2γ2τ2

α2
2

. We will leave this for future

investigation.
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