首页 | 官方网站   微博 | 高级检索  
     


Isobutylene‐rich macromonomers: Dynamics and yields of peroxide‐initiated crosslinking
Authors:Jackson M Dakin  Karthik Vikram Siva Shanmugam  Christopher Twigg  Ralph A Whitney  J Scott Parent
Affiliation:1. Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada;2. Department of Chemistry, Queen's University, Kingston, Ontario, Canada
Abstract:New isobutylene‐rich elastomers bearing multiple pendant styrenic, acrylic, maleimidic, vinylic, and allylic functional groups have been prepared and examined in the context of peroxide‐initiated crosslinking. Halide displacement from brominated poly(isobutylene‐co‐isoprene) (BIIR) by the requisite carboxylate nucleophiles in homogeneous toluene solutions provide the desired esters in quantitative yield without complications from dehydrohalogenation or premature crosslinking. Heating the resulting macromonomers with dicumyl peroxide to 160 °C under solvent‐free conditions gives thermoset derivatives, with reaction rates and yields depending markedly on functional group structure. In general, high cure extents can only be achieved using highly reactive pendant functional groups, owing to the competitive balance between crosslinking through C?C oligomerization, and degradation through β‐scission of backbone macroradical intermediates. Independent control of crosslinking rates and cure extents is gained through the use of nitroxyl radical traps bearing acrylate functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 123–132
Keywords:butyl rubber  elastomers  polymer modification  radical crosslinking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号