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Abstract: By the well-known large and small blocks parting method for dependent situations,
we establish the asymptotic normality of the Empirical Distribution Function under Negatively
Associated Sequences. As its application in reliablity problems, a natural estimate F n(x)
for the survival function F (x) = P (X > x) is proposed, and the asymptotic normality of

n
1

2 [F n(x) − F (x)] is established.
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1. Introduction

Random variables {X1, · · · , Xn; n ≥ 2} are said to be negatively associated (NA), if for

every pair of disjoint subsets A1 and A2 of {1, 2, · · · , n},

Cov[g1(Xi, i ∈ A1), g2(Xj , j ∈ A2)] ≤ 0,

where g1 and g2 are increasing for every variable (or are decreasing for every variable), such that

covariance exists. Random variables sequence {Xj ; j ∈ N} are said to be negatively associated

if every subfamily is negatively associated. This definition was introduced by Joag-Dev and

Proschan[1]. Because of its wide application in reliability theory problems, statistical mechanics,

probability/stochastic processes and statistics, the notion of NA random variables have received

more and more attention recently.

Let X1, X2, · · · , Xn be a strictly stationary negatively associated random variable sequence

with distribution (d.f.)F, and set F (x) = P (X > x) for the survial function, where X is dis-

tributed according to F ; Of course, F (x) = 1 − F (x). The estimate Fn(x) is the empirical d.f.

based on X1, X2, · · · , Xn, and F n(x) = 1 − Fn(x).

The estimation of the survival function F (x) and the establishment of asymptotically opti-

mal properties of the proposed estimate F n(x) is, clearly, of interest on its own right. It is also

essential in estimating the hazard rate or failure rate at x, r(x), where r(x) = f(x)

F (x)
, x ∈ R, with
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F (x) > 0 and f is the probability density function (p.d.f.) of F . Roussas[2] established asymp-

totic normality for n
1

2 [F n(x) − F (x)] under dependence conditions. Yuan Ming and Su Chun[3]

developed the weak convergence for empirical process based on NA. Motivated by them, in the

note, we shall established the asymptotic normality of n
1

2 [Fn(x) − F (x)] under NA using large

and small blocks, under weaker assumptions than the references. As its application in reliablity

problems, a natural estimate F n(x) for the survival function F (x) = P (X > x) is proposed, and

the asymptotic normality of n
1

2 [F n(x) − F (x)] is also established.

The paper is organized as follows. The required assnmptions and notation are introduced

in Section 2. The main result is also stated in the same section, but the proof is deferred to

Section 4. Section 3 is devoted to the establishment of some auxliary results.

2. Assumptions, notation and main result

In this section, the assumptions used throughout the paper are gathered together for easy

reference, the necessary notation is introduced, and the main result Theerem 2.1 is stated.

Assumptions:

(A1) (i) The random variables X1, X2, · · · constitute a strictly stationary sequence and have

distribution function and probability density function F and f , respectively.

(ii) X1, X2, · · · are NA.

(iii) The joint distribution of X1, Xj is F1,j+1(x, y), ∀x, y,∈ R and j ≥ 1.

Let u(n) =
∞∑

j=n

sup
(x,y)∈R

|F1,j+1(x, y) − F (x)F (y)|. Thus, u(1) < ∞.

(iv) The probability density function is bounded.

(A2)(i) Let 0 < α = αn < n, 0 < β = βn < n be integers tending to ∞ along with n.

(ii) Let 0 < µ = µn
n→∞−→ ∞ be defined by µ = [n/(α + β)] ([x] stands for the

integral part of x).

(iii) µ(α + β) ≤ n , µ(α + β)/n → 1 and µβ/n → 0.

(iv) α2

n → 0.

On the basis of X1, X2, · · · , Xn, define Fn(x) by

Fn(x) =
1

n

n∑
j=1

Yj(x), Yj(x) = I(Xj≤x). (2.1)

Thus

EYj(x) = F (x), Var[Yj(x)] = F (x)[1 − F (x)]=̂σ2
1(x), (2.2)

and

n
1

2 [Fn(x) − F (x)] = n− 1

2

n∑
j=1

Zj , Zj = Yj(x) − EYj(x)), (2.3)

where Zj stands for Zj(x). The derivations below will use the fact that random variables Zj , j =

1, · · · , n, are bounded by 1. We split the frist expression in (2.3) as follows:

n− 1

2

n∑
j=1

Zj = n− 1

2 (Sn + Tn + T ′
n), (2.4)
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where

Sn =

µ∑
m=1

ym, Tn =

µ∑
m=1

y′
m, T ′

n = y′
µ+1, (2.5)

and

ym =

km+α−1∑
i=km

Zi, km = (m − 1)(α + β) + 1, m = 1, · · · , µ; (2.6)

y′
m =

lm+β−1∑
i=lm

Zj , lm = (m − 1)(α + β) + α + 1, m = 1, · · · , µ; (2.7)

y′
µ+1 =

n∑
j=µ(α+β)+1

Zj . (2.8)

Let

σ2
0 = σ2

1(x) + 2σ2(x)(≥ 0), where σ2
1(x) = F (x)[1−F (x)] and σ2(x) =

∞∑
j=1

E(Z1Zj+1). (2.9)

Theorem 2.1 Assume A1 and A2, then

n
1

2 [Fn(x) − F (x)]
d−→ N(0, σ2

0). (2.10)

Corollary 2.2 Assume A1 and A2, then

n
1

2 [F n(x) − F (x)]
d−→ N(0, σ2

0), (2.11)

where “
d−→” denotes the convergence in distribution.

3. Some auxiliary Results

In this section, a number of lemmas are presented and will be used in the subsequent parts

of the paper.

Observe that

|Cov(Zi, Zj)| = |Cov(Yi, Yj)| = |Cov(I(Xi≤x), Cov(I(Xj≤y))| = |Fi,j+1(x, y) − F (x)F (y)|. (3.1)

Lemma 3.1 Assume A1. For any integer k ≥ 2, we have

|
∑

1≤i<j≤k

E(ZiZj)| ≤ Ck < ∞.

Proof We note that

|
∑

1≤i<j≤k

Cov(Zi, Zj)| ≤
∑

1≤i<j≤k

|Cov(Zi, Zj)|

≤ C
∑

1≤i<j≤k

|Fi,j(x, y) − F (x)F (y)| ≤ C
k∑

i=1

∞∑
j=1

|F1,j+1(x, y) − F (x)F (y)| ≤ Ckc(1)

= Ck < ∞.
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Lemma 3.2 Under (A1) and (A2),
µ

n
E(y′

i)
2 → 0.

Proof By stationarity, it is easy to see that

µ

n
E(y′

i)
2 =

µ

n
E(

α+β∑
j=β+1

Zj)
2 =

µ

n
E(

β∑
j=1

Zj)
2

=
βµ

n
σ2

1(x) + 2
µ

n

β−1∑
j=1

(β − j)Cov(Z1, Zj+1)

≤ βµ

n
σ2

1(x) + 2
µ

n

β−1∑
j=1

(β − j)|F1,j+1(x, y) − F (x)F (y)|

≤ βµ

n
σ2

1(x) + 2(
µ

n
β)

∞∑
j=1

|F1,j+1(x, y) − F (x)F (y)| → 0.

Lemma 3.3 Under (A1) and (A2),

1

n

∑
1≤i<j≤µ

E(y′
iy

′
j) → 0.

Proof Calculate the expectation E(y′
1y

′
j+1), replace y′

1 and y′
j+1 by their expressions in (2.7),

and employ the stationarity to obtain

|E(y′
1y

′
j+1)| = |

α+β∑
i=β+1

(j+1)(α+β)∑
l=j(α+β)+β+1

Cov(Zi, Zl)|

= |
β∑

r=1

(β − r + 1)Cov(Z1, Zj(α+β)+r)| + |
β−1∑
r=1

(β − r)Cov(Zr+1, Zj(α+β)+1)|

= |
β∑

r=1

(β − r + 1)Cov(Z1, Zj(α+β)+r)| + |
β−1∑
r=1

(β − r)Cov(Z1, Zj(α+β)−r+1)|

≤ β|
j(α+β)+β∑

r=j(α+β)−(β−2)

Cov(Z1, Zr)| = β|
j(α+β)+(β−1)∑

r=j(α+β)−(β−1)

Cov(Z1, Zr+1)|

≤ β

j(α+β)+(β−1)∑
r=j(α+β)−(β−1)

|F1,r+1(x, y) − F (x)F (y)|. (3.2)

Then, by (3.2), we have

| 1
n

∑
1≤i<j≤µ

E(y′
1y

′
j)| ≤

1

n

µ−1∑
j=1

(µ − j)|E(y′
1y

′
j+1)|

≤ µ

n

µ−1∑
j=1

|E(y′
1y

′
j+1)|
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≤ C
βµ

n

µ∑
j=1

j(α+β)+(β−1)∑
r=j(α+β)−(β−1)

|F1,r+1(x, y) − F (x)F (y)|

= C
βµ

n

µ(α+β−1)∑
r=α+1

|F1,r+1(x, y) − F (x)F (y)| = C(
βµ

n
)u(α + 1) → 0.

Lemma 3.4 Under (A1) and (A2), with Tn, T ′
n given by (2.5), the following conclusions hold

(i). 1
nET 2

n → 0; (ii). 1
nE(T ′

n)2 → 0.

Proof (i). By Lemmas 3.2 and 3.3 , we have

1

n
ET 2

n =
µ

n
E(y′

1)
2 +

2

n

∑
1≤i<j≤µ

E(y′
iy

′
j) → 0.

(ii). Observing the double inequality µ(α + β) ≤ n < (µ + 1)(α + β), we have

n − µ(α + β)

n
<

1

µ
.

Using the stationarity and applying Lemma 3.3 for k = n − µ(α + β), we have

1

n
E(T ′

n)2 =
n − µ(α + β)

n
σ2

1(x) +
2

n

∑
µ(α+β)+1≤i<j≤n

Cov(Zj , Zj)

≤ n − µ(α + β)

n
σ2

1(x) + C
2(n − µ(α + β))

n
≤ 1

µ
[σ2

1(x) + C] → 0.

Lemma 3.5 Under (A1) and (A2) and for any subaequence {m} of {n} tending to infinity,

lim
m→∞

1

m

∑
1≤i<j≤m

E(ZiZj) = lim
n→∞

1

m

m∑
j=1

E(Z1Zj+1) = σ2(x)

for some finite σ2(x). And then 1
αEy2

1 → σ2
1(x) + 2σ2(x) = σ2

0(x).

Proof It is easy to see that

1

m

∑
1≤<j≤m

E(ZiZj) =
1

m

m−1∑
j=1

(m − j)E(Z1Zj+1)

=

m−1∑
j=1

E(Z1Zj+1) −
1

m

m−1∑
j=1

jE(Z1Zj+1)

=

m−1∑
j=1

E(Z1Zj+1) −
1

m

m∑
j=1

jE(Z1Zj+1) + E(Z1Zm+1).

But |E(Z1Zm+1)| ≤ C|F1,m+1(x, x) − F 2(x)| → 0, (as m → ∞), then

|
∞∑

j=1

E(Z1Zj+1)| ≤
∞∑

j=1

|E(Z1Zj+1)| ≤ C
∞∑

j=1

|F1,j+1(x, y) − F (x)F (y)| = Cu(1) < ∞,
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so that
∑∞

j=1 E(Z1Zj+1) converges to a finite limit. Then by the Kronecker Lemma, we obtain

1

m

n∑
j=1

jE(Z1Zj+1) → 0.

And

lim
n→∞

1

m

∑
1≤i<j≤m

E(ZiZj) = lim
n→∞

m∑
j=1

E(Z1Zj) = σ2(x).

The second assertion is an immediate consequence of the first by taking {m} = {α}.

Corollary 3.6 Under (A1) and (A2), it holds that

µ

n
Ey2

1 → σ2
0(x).

Proof This is so because βµ
n → 0 implies αµ

n → 1 and

µ

n
Ey2

1 = (
αµ

n
)
1

α
Ey2

1 → σ2
0(x). (by Lemma 3.5)

4. Asymptotic normality F
n
(x)

In this section, we shall establish (2.10). This is done in two steps. Frist, it is shown that

the characteristic functions of
µ∑

m=1
n− 1

2 ym, minus the product of the characteristic functions of

n− 1

2 ym, m = 1, 2, · · · , µ, coverge to 0 in absolute value. And secondly, it is proved that the distri-

bution determined by the product of the characteristic functions of
µ∑

m=1

n− 1

2 ym is asymptotically

the anticipated distribution N(0, σ2
0). The relevant details are in Lemma 4.2 and the proof of

the relation (4.1).

Lemma 4.1[5] Let {Xi, 1 ≤ i ≤ n} be NA, then

|E exp(it
n∑

j=1

Xj) −
n∏

j=1

E exp(itXj)| ≤ 4t2
∑

1≤i<j≤n

cov(Xi, Xj).

Lemma 4.2 Under (A1) and (A2), we have

|E exp(it

µ∑
m=1

n− 1

2 ym) −
µ∏

m=1

E exp(itn− 1

2 ym)| → 0

Proof By µα
n → 0 and the stationarity, we have

|E exp(it

µ∑
m=1

n− 1

2 ym) −
µ∏

m=1

E exp(itn− 1

2 ym)|

≤ 4t2
∑

1≤i<j≤µ

ki+α−1∑
s=ki

kj+α−1∑
l=kj

|Cov(Zs, Zl)|
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≤ C
4t2

n

∑
1≤i<j≤µ

ki+α−1∑
s=ki

kj+α−1∑
l=kj

|Fs,l(x, y) − F (x)F (y)|

≤ C
4t2

n

µ−1∑
i=1

ki+α−1∑
s=ki

µ∑
j=i+1

kj+α−1∑
l=kj

|Fs,l(x, y) − F (x)F (y)|

= C
4t2

n

µ−1∑
i=1

ki+α−1∑
s=ki

∞∑
t=β

|Fs,l(x, y) − F (x)F (y)|

≤ Ct2
µα

n
u(β) → 0.

Lemma 4.3 Assume (A1) and (A2), then

n− 1

2 Sn
d−→ N(0, σ2

0).

Proof Consider the r.v.s n−1/2ym, m = 1, 2, · · · , µ and let znm, m = 1, 2, · · · , µ be independent

r.v.s with distribution of n−1/2y1, so that Eznm = 0. by Lemma 4.2, we have

|E exp(it

µ∑
m=1

n− 1

2 ym) −
µ∏

m=1

E exp(itznm)| → 0

or by the independence of the znm

|E exp(it

µ∑
m=1

n− 1

2 ym) − E exp(it

µ∑
m=1

znm)| → 0.

Now we prove that
µ∑

m=1

znm
d−→ N(0, σ2

0(x)). (4.1)

Set

sn =

µ∑
m=1

Var(znm), Znm =
znm

sn
.

Then the r.v.s Znm, m = 1, 2, · · · , µ are indepenent identically distributed with EZn1 = 0, V ar(Zn1) =

1
µ , so that

µ∑
m=1

Var(Znm) = 1. By Corrollary 3.1, we have s2
n → σ2

0(x). Then the convergence

(4.1) is equivalent to
µ∑

m=1

Znm
d−→ N(0, 1). (4.2).

Let Gn be the d.f. of n−1/2y1

sn
. Then for every ε > 0,

gn(ε) = µ ·
∫

(|x|≥ε)

x2dGn → 0.
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From (2.4), |n−1/2y1

sn
| ≤ (Cα)/(sn

√
n), where C is a bound for K, so that |n−1/2Zn1

sn
| ≤ (Cα)/(sn

√
n).

Thus

gn(ε) = µ ·
∫

(|x|≥ε)

x2dGn

≤ µ · E[Z2
nmI(|Zn1|≥ε)] ≤

C2α2µ

ns2
n

P (|Zn1| ≥ ε)

≤ C2α2µ

ns2
n

· Var(Zn1) =
C2

ns2
n

· µVar(Zn1) ·
α2

n
→ 0 (where

α2

n
→ 0).

Then by the Feller-Lindeberg Criterion, (4.1) is proved. So the desired result follows.

Proof of Theorem 2.1 By Lemma 3.4, we have n−1E[T 2
n +(T ′

n)2] → 0, so n− 1

2 (Tn +T ′
n)

P−→ 0.

In conjunction with Lemma 4.3, the desired result (2.10) yields.

Proof of Corollary 2.2 Observe that F n(x) − F (x) = F (x) − Fn(x). By Theorem 2.1, the

desired result (2.11) is obtained.
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