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SPATIOTEMPORAL DYNAMICS IN A
PREDATOR-PREY MODEL WITH A
FUNCTIONAL RESPONSE INCREASING IN
BOTH PREDATOR AND PREY DENSITIES*

Ruizhi Yang! and Yuting Ding’'

Abstract In this paper, we studied a diffusive predator-prey model with
a functional response increasing in both predator and prey densities. The
Turing instability and local stability are studied by analyzing the eigenvalue
spectrum. Delay induced Hopf bifurcation is investigated by using time delay
as bifurcation parameter. Some conditions for determining the property of
Hopf bifurcation are obtained by utilizing the normal form method and center
manifold reduction for partial functional differential equation.
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1. Introduction

Many scholars have established and studied predator-prey models in the form of
differential equations, since the predator-prey relationships are widespread in nature
[2,8,11,13,16]. The functional response is essential since it reflects the specific
interaction between predator and prey. In [4], the authors propose a functional
response increasing in both predator and prey densities as follow

Ceguv

(u,v) = hCequv + 1’

(1.1)

where v and v denote the densities of prey and predator, respectively. C' is the
fraction of a prey item killed per predator per encounter. h is the handling time
per prey. eg is the total encounter coefficient between the predator and the prey.
This type functional response reflects a higher hunting rate of predator when the
predators’ population is large [4].

Based on the functional response (1.1), Kimun et al. proposed the following
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model [9]
. u Ceguv
frng ]_ - -
= ruf K) hCequv + 17 (12)
. eCequv '
V= —"—"—0v— .
hCequv + 1 s
Using the following parameter transformation,
- _ _ 1 € wh
r y K Zz, €oNY Y, Ceo(hK)ZT' a, rh ﬁa c Vs
the model (1.2) becomes
2
uzu(l—u)—L“” ,
uv + 1 (1.3)
o= Bo(——— —7)
w1l

In [9], the authors analyzed the saddle-node, Hopf and Bogdanov-Takens bifurca-
tions.

In predator-prey models, reaction diffusion term and time delay are two impor-
tant factors [1,3,5,6,10,12,14]. Since the spatial distributions predator and prey
population are inhomogeneous and spread around. There is a delay in energy con-
version between predator and prey, too. Many scholars investigate delayed diffusive
predator-prey models and show some new dynamical phenomena (Turing instabil-
ity, spatial inhomogeneity bifurcating period solution, spatial pattern, and so on).
Motivated by this, we consider the following model.

8u(337t) - auv?
o = hdutu(l—ult—7) - ———,
ov(z,t) uv
ot~ RAvHATET ), weQ >0, (1.4)
Qu,t) _ 0v@t) _ o caq. t o0,
o ov
u(w, t) = wi(2,8) > 0,0(x,t) = vi(w,8) > 0, w€Qte[-r0]

All parameter are positive. d; and ds are diffusion coefficients of prey and predator,
respectively. 7 is the resource limitation of the prey logistic equation. The aim of
this paper is to study the effect of diffusion and time delay on the model (1.4).
Compare with the model (1.3), whether some new dynamical phenomena occurs.

The organization of this paper is as follows. In the section 2, we study the non-
delay model, including Turing instability and local stability of positive equilibrium.
In the section 3, we analyze the delay model, including delay induced instability
and Hopf bifurcation at positive equilibrium, and the property of Hopf bifurcation.
In the section 4, we give a brief conclusion.
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2. Non-delay model

When 7 = 0, the model (1.4) becomes

2
O g At (1 — ) — 2
ot uv + 1
5 (2.1)
v uv
a = dQA'U"‘ﬂ’U(u’U 1 —’}/)

2.1. Equilibria

The equilibria of model (1.4) are the roots of the following equations,

au1)2

ul _53 Twt 1l 0 (2.2)
Bl 27— =0

Referring to literature [9], we have the following conclusion about the equilibria of
model (1.4).

Lemma 2.1 ( [9]). For the model (1.4), the following statements are true.
(i) (0,0) and (1,0) are two boundary equilibria.

(i) If a > 4(217;;’), the model (1.4) has no coexisting equilibrium.

(iii) If o = 4(217;3) , the model (1.4) has a unique coexisting equilibrium (%, %)

(iv) If a < 4(217;;), the model (1.4) has two coexisting equilibria (u, ﬁ)
and (ug, m), where 0 < uy < % < ug < are two roots of the following
equation.

ary?

i

In this paper, we mainly consider the property of coexisting equilibrium. We

just denote the (u.,v.) as a coexisting equilibrium of the model (1.4).

ud —u? + = 0. (2.3)

2.2. Local stability

Linearize system (1.4) at (u.,v) is as follows:

du
57 u(t u(t u(t —7
A N B I Ll O s : (2.4)
% v(t) v(t) v(t —71)
where
a1 —a —uy 0
Ll— ' ? ) L2_ )
Bb1 Bby 0 0
and
a " o 4 ay(2 =) >0 =2 50 by = (1—7)y >0
1 1= )2 ) 2 = ay v ) 1—%% ) 2 = Y)Y :

(2.5)
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The characteristic equation of (2.4) is
det(\[ — M,, — L1 — Lae ") =0 (2.6)

where I = diag{1,1} and M,, = —n?/I?diag{d;,d>}, n € Ny. Then, we have

N 4N, + By + (Cp + duy)e™™ =0, neNg2 {0}UN, (2.7)
where
n2
Ay = (dy + alz)lf2 — (a1 + Bba),
nt n?
B, = d1d274 — (ards + d1ﬂb2)17 + B(azby + arby),

2
n
Cn = dg’u*lf2 — ﬁbgu*

When 7 = 0, the characteristic Eq. (1.4) reduces to the following equation.
N —tr A+ Ap(r) =0, n e N, (2.8)

where

try, = a; — Uy + BbZ - %;(dl =+ d2)a

8o = Blasbu-+ s — )]~ [daas — ) 4 o] + e
and the eigenvalues are given by
A (r) = o & t;’% —n em, (2.10)
We make the following hypothesis
(H1) ay* — (1 =)yl >0,
My pepetet Lol oor .

By direct calculation, we can get the following conclusion.

Proposition 2.1. If hypothesis (Hy) holds, then asby +ba(a; —uy) > 0. If hypoth-
esis (Ha) holds, then a1 — u, + Bba < 0.

Theorem 2.1. Ifd; = ds =0, (Hy) and (Hg) hold. Then the equilibrium (., vs)
1s locally asymptotically stable.

Proof. By the Proposition 2.1, we know that all eigenvalues have negative real

parts. Then the equilibrium (u,,v,) is locally asymptotically stable. O
Define some critical value
d
B+ = ﬁ[@(al — ) + 2a9by + 2/ asbi[b2 (a1 — u) + agbi]],
2
1
0+ = m[dg (a1 —u*)-i-ﬁbgdl + \/(dg(al —U*)+Bbzd1)2—4ﬂd1d2 (bg (a1 —’U,*)-i-agbl)}.

(2.12)
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Theorem 2.2. Ifdy > 0, da > 0, (H1) and (Hz) hold. For the model (2.1), the
following statements are true.

(i) The equilibrium (u.,vs) is locally asymptotically stable for 0 < 8 < g—fﬁc.
(ii) If B. < By, then the equilibrium (us,v.) s locally asymptotically stable for
2B < B < Be.

(iii) If B > By, then the equilibrium (u.,v.) is locally asymptotically stable for
da
TP <P <Py

(iv) If B > B+ and there is no k € N such that ]lf—: € (0—, 04+) then the equilibrium
(s, vx) 1s locally asymptotically stable for 81 < f < B..

(v) If B. > B+ and there is a k € N such that ’;—22 € (0—, 0+) then the equilibrium
(s, vs) is Turing unstable for fy < f < fe.

Proof. By direct calculation, we have f_ < Z—fﬁc < By Ifp < g—fﬁc, we can
obtain tr,, < 0 and A,, > 0. This means that all roots of Eq. (2.8) have negative
real parts. Then the equilibrium (u.,v,) is locally asymptotically stable (statement
(1) is ture). Similarly, statements (1) — (4) are also true. If conditions in statement
(5) hold, then Eq. (2.8) have at least one root with positive real part. Then the
equilibrium (u,,v,) is Turing unstable. O

2.3. Example

Fix the following parameters
a=15 v=0.25 dy=1. (2.13)

It is easy to obtain that (0.8090, 0.4120) and (0.5000, 0.6667) are two positive
equilibria. For the equilibrium (0.8090, 0.4120), (Hy) doesn’t hold implying that
this equilibrium is unstable. So we mainly investigate the other equilibrium. We
choose (u.,vs) = (0.5000, 0.6667), and (Hy) is satisfied. The bifurcation diagram
for ds and g is given in Fig. 1. Now, we fix do = 0.1 and [ = 4, then we have

B
141
12+
10F
8t
b Turing unstable region Hopf bifurcation
Stable region
4 b
;///m \\\
2r &
/ o e
: . . . —
0.2 0.4 0.6 0.8 1.0

Figure 1. Bifurcation diagram for d2 and S.
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B+ =~ 1.4388, and . =~ 2.0000. If we choose § = 1.8, then (u,,v,) is Turing unstable
(shown in Fig. 2). If we choose § = 1, then (u.,v.) is locally asymptotically stable
(shown in Fig. 3).

u(x,t) v(x,t)

Figure 2. Numerical simulations of system (2.1) for 8 = 1.8.

u(x,t) v(x.t)

il
J \mw\‘\\\mum""{fm\\\\"\t\J\\\\\N‘\:\mmu\‘\‘\uuuu\ |
A

\\ﬁ\\\\\N‘\\\MH\‘U\“\W\N

Figure 3. Numerical simulations of system (2.1) for 8 = 1.

3. Delay model

3.1. Existence of Hopf bifurcation

To study the stability of E,(u.,v.) when 7 > 0, we suppose (Hy), (Hz2) and one
of conditions (1) — (4) in Theorem 2.2 always hold. Let iw (w > 0) be a solution of
Eq. (2.7), we have

—w? +iwA, + B, + (Cy, + iwu,)(coswt — isinwr) = 0.
Then we have
—w? + B,, + C,,coswT + wu,sinwt = 0,
A, w — Cpsinwt + wugcoswt = 0.

It leads to
wh+ (A2 - 2B, —u)w?+ B2 -C2=0. (3.1)
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Denote z = w?, then (3.1) can be changed into

224+ (A2 - 2B, —u?)z+ B2 - C? =0, (3.2)

n

and the roots of (3.2) are

o = L[-(42 ~ 2B, —u2) = /(AT 2B, — 2P — A(BE O3]

By direct computation,

4 2
A2 2B, —u? = (&2 + d2) % — 2(ardy + ﬁbgdg)% 5262 — 2a9b18 — u? + a2,

4 2
B, -C, = dldQ% — [(d2(a1 + uy)) + Bbadi] % + Blazby + ba(ar + uy)],

B,+C,=A,>0.
Fix parameters o, (3, «y, define
D ={k € Ny | Eq. (3.2) has positive roots with n =k.} (3.3)

For n € D, if 2zt > 0, then Eq. (2.7) has a pair of purely imaginary roots +iw, at
TIF, j € No; if 27 > 0, then Eq. (2.7) has a pair of purely imaginary roots -iw,;
at 777, j € Ny, where

, 2T,
(A);i::\/Z%, T,,Jl’:t:T,(l)’i“r j:tv(.7207172a"')a

n
= iarccos (Cn — s An)(@ir)* — BnCr
% CZ+ad(wi)?

(3.4)

0,4
Tn

From (3.4), we have 0% < 73:% (j € N). For k € D, define the smallest 7 so that

n

the stability will change

Ty = min{T,S’i or 70t | k € D}. (3.5)

Lemma 3.1. Suppose (Hy) (or (Hz)) holds. If (A%2 —2B, —u?)*—4(B2—-C2?) > 0,
then Re(%)\T:ﬁ# >0, Re(%)L:Ti,f <0 forT €D and j € Ny.

Proof. Differentiating two sides of (2.7) with respect 7, we have

dX. 1 22+ An +ue

() -3
dr (Ch + Auy)e=AT A

Then

d\,_, 2N+ A, +ue ™™ 1
Relge) ram = Relie SRy~ Xlr=mt

+

1
= [XWQ(QWQ + A,,Q,L — 2B’ﬂ — uz)]T:ﬁ;,i

1
= £ V(A = 2B, — u2)? —A(B} - CR)],_ .+,
where A = wb3 + C2w? > 0. Therefore Re(%)|T:T£,+ >0, Re(%)hznjf <0. O
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Theorem 3.1. Suppose (Hy), (H2) and one of conditions (1) — (4) in Theorem
2.2 hold. For system (1.4), the following statements are true.

(i) E.(us,vs) is locally asymptotically stable for all T > 0 when D = (.

(ii) E.(ux,vs) is locally asymptotically stable for T € [0,7.), and unstable for
T € [Tw, Tu + €) with some € when D # 0, where T, is defined in (3.5).

(iii) System (1.4) undergoes a Hopf bifurcation at the equilibrium E.(u.,v.) when
T=10" (or T=17)7), j € No, n € D when D # 0. The bifurcating periodic
solutions are spatially homogeneous (inhomogeneous) when n =0 (n > 0).

3.2. Properties of Hopf bifurcation

Now, we will study the property of Hopf bifurcation by the method [7,15]. For
a critical value 75T (or 777), we denote it as 7. Let u(z,t) = u(x,7t) — u, and
0(x,t) = v(x, Tt) — v, then the system (1.4) is (drop the tilde)

ou Cult—1) — e — a(v+v,)’
&—T[dlAu—i—(u—ku*)(l (t 1) * 1+(u+u*)(v+v*)>]7 (36)
o (w4 uy) (v 4 vs)

E_T[dzAv—Fﬁ(v—Fv*) <1+(u—|—u*)(v+v*) _’Y>]~

Denote 7 = 7+¢, and U = (u(z,t),v(z,t))T. In the phase space C; := C([—1,0], X),
(3.6) can be rewritten as

d%w — FDAU(t) + La(Uy) + F(Uy, ), (3.7)

where L.(¢) and F(¢,¢) are

L(6) = e (a1¢1(0) — az$2(0) — U*Cbl(—l)) (3.8)
Bb191(0) + Bbag2(0)
F(¢,e) =eDA¢p+ L(¢) + f(¢,¢), (3.9)

with

f(¢7 6) = (72 + E)(F1(¢76)7F2(¢3 5))T7

o (¢2(0) + v,)? )

Fi(9,€) = (#1(0) +u.) (1 B E X ORRICA RN
—a101(0) + a2¢2(0) + usp1 (-1

)7
Fa(6.9) =0 (02(0) +v.) ( [l O

—’Y) —Bb1¢1(0)—Bb22(0),

respectively, for ¢ = (¢1,¢2)T € C;.
Consider the linear equation
dU(t)

S = FDAU() + La(Uy). (3.10)
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We know that A,, := {iw, 7, —iw,7} are characteristic roots of

dz(t __n?
di ) = —TDsz(t) + L7 (z). (3.11)
Choose
TE o=0,
n"(e,7) =40 o€ (-1,0), (3.12)
—7F 0 =—1,
where
% 0
ay —d1% —a — Uy
E={ T, F= . (3.13)
Bb1 Bby — da > 0 0
Then

n2 0
~TDL6(0) + La(o) = [ d(o, 7))

for ¢ € C([—1,0],R?).
Define the bilinear paring

0 o
ww»:wmﬂm—/’g B(E — o) (0, F)p(E)de
ThUes0 (3.14)

=M®ﬂ®+%/¥¢@+DFﬂO%,

for ¢ € C([-1,0],R?), v € C([0,1],R?). A(7) has a pair of simple purely imaginary
eigenvalues +iw, 7, and they are also eigenvalues of A*. o
Define pi1 (o) = (1,§)Te“r™ (o € [-1,0]), qi(r) = (L,n)e 7" (r € [0,1]),

where
€= Bby _ as
“Bby + den?/ +iw’ 1 Bby— den2/I2 + 1w
Let ® = (&;, &) and U* = (%, U%)T with

_pi(o)+p2l) _ [ Re(é7) L _pi0)—pao) _ [ Tm(eT)
1(o)= 2 B (Re <€e-wn+o> ) , Pa(0) 2 (Im (§e'wm> )

for 6 € [-1,0], and

Re (e¢iwnTr _ Im (i
vy = 2te) (R gy 0wl ()

Re (neﬂun‘rr) (3 Im (neﬁun‘rr)
for r € [0,1]. Then we can compute by (3.14)

D} o= (U5, ®y), D} = (U5, ®,), Di = (U5, &), Df = (U5, &y).
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D; D3

(V)

Define (0%, @) = (V5, @) = and ¥ = (¥, Uy)T = (¥*, &)~ 10*. Then

D3 Dj
(U, ®) = I,. In addition, define £, := (31, 32), where

n
51— COS TX 52_ 0
n - 9 n -
0 cos Tx

We also define
c fo=c1B: + 2B, for c= (61,62)T e Cs.
and

153 I
1 _ 1 _
<U,v >i= — wvide + — U Uadx
lTr 0 l7T 0

for u = (uy,uz), v = (v1,v2), u,v € X and < ¢, fo >= (< ¢, f& >, < o, f2 >)T.
Rewrite Eq. (3.6) as

AU (t)

BT AzU + R(Uy, e), (3.15)
where
0, 0 €[-1,0);
R(Ut,e) = (3.16)
F(Uge), 6 =0.
The solution is
Z1
U =9 fn+ h(l‘l,.’L‘Q,E), (317)
X2
where
Z1
= (\Ij,< Utvfn >)a
1)
and
h(z1,x2,€) € PsCy, h(0,0,0) =0, DAh(0,0,0)=0.
Then
z1(t)
U= fn+ h(l‘l,ﬂfg, 0) (318)
{EQ(t
Let z = 1 — izg, then
1 2—53 1 L
o fn - (CI)h(I)Q) i(2—3) fn = 5(1712 +P12)fm

xT9 3
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and
h(z1,22,0) = (22 1E=2)
2 2
Eq. (3.18) is
1 L z24+7Z i(z —2)
Uy = 5(1312 +P12) fr + I( 5 T 3 ,0)
. (3.19)
= 5Pz +P12) fu + W(z.2),
where
Wz z) = (222, 1223 )
2 2
From [15], z satisfies
2 =1iw,Tz + g(z,%), (3.20)
where
g(2,2) = (¥1(0) — 1¥5(0)) < F(Uy,0), fr > . (3.21)
Let
22 Z2
W(Z7§) = WQOE + Wii12Z + WOQE + - (322)
22 z2
9(2,%) = 9207 + 91127z + goz 5 + (3.23)
then
1 =2
s (0) = 2(z+z)cos(nl )+ Wi (0 05 +W<1>( 0)27 + Wi (0)5 ++-+.,
)
v (0) = (§+§z) cos (%) + W2<§>(0) + WP 07+ W 05+,
1 L . =2
w(1) = 5 (7747 476 7) cos( - >+W2%>< e Wi D+ W (1) 5+

and

F1(U,0) = %Fl = —ug(0)ug(—1) + i (0) 4+ aus (0)v (0) 4+ azv? (0) + aqui (0)

+ asuf (0)v:(0) + asuy (0)v7 (0) + azv (0) + O(4),
(3.24)

Fy(Uy,0) = %F2 =p1uf(0) + Bou (0)v:(0) 4 B3v7 (0) + Bauf (0) + Bsui (0)ve(0)

+ Bour(0)v7 (0) + Brvg (0) + O(4),
(3.25)
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with
o — av? o — 20004 S QU s — av?
YT 1R T (e +1)3 T (127 T (wns + DY
N 3aw? o — a(2u.v, — 1) o — au? B = B3
T o+ DY T o+ )P T w1V TN T (v, + 1)3
B 204 - By B B - 3502
/62 - (U*U* + 1)3; ﬂ3 - (U*U* + 1)37 /84 - (U*U* + 1)47 /85 - (U*U* + 1)47
B(1 — 2u,wv.) 65u?
Bs = L M L —
(usvy + 1) (usvy + 1)
(3.26)
Hence,
— o, nT . 2? _ zZ2_ 2’z nx 3 NT
F1(Ut,0)=cos (T)(§X20+22X11+?XQOH—T(M cos T—i—xg cos T)—&— e
- nx. 2> z2 2%z nx nx
Fy(Ut,0) = 0052(7)(590 + 2Z¢11 + 5?20) + 7(9 cos =~ + ¢ cos® T) te
(3.27)
< F(U,0), fn >=7(F1(Ur,0) fy; + F2(Ut, 0) f7)
2 N 2= [k
:%7: X20 e X11 F—i—%% X20 I‘—|—Z2Z~ 1 4.
20 S11 §20 K2
(3.28)
with
1 [ nx
r=— cos®(—)dz,
l7T 0 l
lm lm
K1 = f—; ; COSz(T)dx ;(—/0 cos4(nlm)dz,
I I
S1 2 X 4 n
== —)d = —)d
Ko lﬂ_/ocs(l)x—i—l/o (l)x
and
1 —iTw
X20 =5 (o1 + &(az + agf) —e 79,
1 ) (1) CiFwn | iFw
X =-7 (*(2041 + aa(Wy17(0) + &) + 2a3W71 " (0)€) + 779" +e ") )

X1 =W (0) (2 st — 7o) WD) (0) 205+ 205) WY (1)~ LWL (1)
LW O0)(~ 5 (~200 — 02D (0) + 7))
SO0 + 205w ()

X2 %(3044 + as(W(0) +26) + €26 W (0) + gt + 3ar W (0)€)),
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620 =3 (B + £(B2 + Bst)

1 :i(gﬂl + B (WP (0) + &) + 28, (0)¢),

B26

=Wy (0) (ﬁl + 2) + S8 +2858) + [V 0281 + W (0))

£ AW OB + 28,0 ),

. :%(354 + Bs (W1 (0) + 2€) + E(286E + Bo + 36 W11 (0)€)).

Denote
V1(0) —1%2(0) == (11 72)-
Notice that l
1 s
— cos?’@dac:O7 n=12,3,---,
l7T 0 l
and we have
(V1(0) —1¥2(0)) < F(Ut,0), fn >
22 . 2 ~
=35 (71x20 + 72620)T'7 + 2Z(y1x11 +72600) 1T + - (11 X20 +72520) 7 (3.29)
27

227
+ TT[’Yl/‘Gl +y2k2] + oo

Then by (3.21), (3.23) and (3.29), we have gao = g11 = go2 =0, for n = 1,2,3,---.
If n = 0, we have:

920 = Y1TX20 +727S20,  g11 = V1TX11 +V2TS11,  Go2 = V1T Xa0 + V27520-

And for n € Ny, go1 = T(mk1 + Y2K2).
From [15], we have

W(Z,E) = Woozz + W112Z + WHZE + Wogﬁ + -,
2 2

A-;W(&E) = A;WQ()% + A:Wi12Z + A;W()g% +---,

and .
W(z,Z) = A:W + H(z, %),

where
22 =2
H(Z,E) = HQO? + Whizz + H02? —+ .-

= F(U,,0) — ®(V, < F(U,,0), fn > fn)-

(3.30)

Hence, we have
(2iwn7~' — A;—)WQO = H20, - A;—Wu = Hu, (—innf' - A;—)WOQ = HOQ, (331)

that is

Wao = (2iw, 7 — A7) ' Hog, Wiy = —AZ'Hy1, Woo = (—2iw, 7 — Az) " Hoo.
(3.32)
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Then

H(Z7E) = _@(9)\1}(9) < F(Uhg)vfn > fn

_ _(p1(9) ‘;p2(9),p1(9) ;p2(9)) ®41(0) < F(ULO). £ > fo
1 D4(0)
= —%[pl(a)(‘h(@) —i®2(0)) + p2(0)(21(0) +1P2(0))] < F(Ut,0), fr > - fn
2
= —%[(pl (0)g20 +p2(9)§02)? + (p1(0)g11 + p2(0)g11)2Z
=2
+ (1(0)g02 + 2(0)F20) 5] + -+
Therefore,
n €N,
Hyo (6
{ —5(p1(0)g20 + p2(0)Fo2) - fo n =0,
n €N
Hi:(6
{é 0)g11 + p2(0)g11) - fon =0,
n €N
Hoa (8
{é 0)g02 + p2(0)Ga0) - fo n =0,
and
H(Z,Z)(O) (Utao) (\II <F(Ut7 )7fn >)'fna
where
T 20 cos?(2E), n €N,
Hy(0) = 3 (3.33)
. [ X20 1
T — 2(P1(0)g20 + p2(0)Go2) - fo, n = 0.
S20
T xu cos?(2E), n €N,
1 (0) = <11
#) = 21)gu1 + p2(0)310) - for n = 0.
C11

By the definition of Az and (3.31), we have

. 1
WQO = A-,"—WQO = 2iwn7~'W20 + =

2(291(0)920 +p2(0)02) - fry, —1<6<0.
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That is )
i

(g20p1(0) + gﬂpQ(e)) o+ Byetien .

Wao(0) = 3

2iw,, T
where
Wzo(O) n:1,2,3,~~-,

E = . _
W20(0) — 515 (92001 (0) + 2§2p2(0)) - fo n = 0.

By the definition of Az and (3.31), we have that for —1 <6 <0

— (92001 (0) + 22y (0) - fo + 21eonFEy — Ar(—— (ga0p1(0) + 2225(0)) - fo)

3 2w, T 3
— A:Ey — Lz (——=(920p1(0) + gﬂpz(o)) < fo + Ere?ent?)
Wn T 3
- | X20 1 _
=7 = 5 (1(0)g20 + p2(0)go2) - fo.
S20
As
Azp1(0) + Lz(p1 - fo) = iwop1(0) - fo,
and
Azp2(0) + Lz(p2 - fo) = —iwop2(0) - fo,
we have
QiwnEy — Az By — Lz Eye¥“n = 7 X20 cos%%), n € Np.
S20
That is
E,=7F X0 COSQ(E)
l
S20
where
, o -1
2w, T +d1r — a1 + Upe2wnT Ta>
— by 2w, 7 + daly — b

Similarly, from (3.32), we have

—W = 2w,ﬁ(pl(9)gll +p2(0)711) - fn, —1<60<0.
That is )
i
Wi (0) = o—— (P1(0)g11 — p1(0)g11) + Bo.
iw, T
Similarly, we have
E, =7E" x cos2(nl—m),

S11



Spatiotemporal dynamics in a predator-prey. .. 1977

where .
N dl%z — a1+ Us az
E* = -
—Bb do7x — Bb2
Thus, we have
i lgo2|*, | 1 Re(c1(0))
0) = -2 2 e - =
c1(0) % 7 (920911 |g11] 3 )+ 2921, H2 Re()\’(njl))’ 530
1 ) '
Tz = ———=[Im(c1(0)) + p2Im(XN'(73))], B2 = 2Re(c1(0)).
n

Theorem 3.2. For any critical value 5% the bifurcating periodic solutions exists
for > 13% (or7T < 75% ) when g > 0 (or pug < 0), and are orbitally asymptotically
stable (or unstable) when Sz < 0 (or Sz > 0).

3.3. Example

Fix parameters in (2.13), do = 0.1, l = 4 and 8 = 1. By direct computation, we
have D = {0,1,2,3} # 0, 7. = 78’7 ~ 1.7335. By Theorem 3.1, we know that
(ux,vs) is locally asymptotically stable when 7 € [0,7.) (shown in Fig. 4). The
Hopf bifurcation occurs when 7 = 7. By Theorem 3.2, we have

fia ~ 475263 > 0, fo~ —1.2381 <0, and T~ —3.9621 < 0.

Hence, the locally asymptotically stable homogeneous bifurcating periodic solutions
exists for 7 > 3.4595, and the period of bifurcating periodic solutions decrease
(shown in Fig. 5).

u(x.t) v(xt)

0.6
0.5
04+
03

0.2
1500

1000 _— 15
< o
500 \\ o 10
0 ~ 5
t 500 0

X

Figure 4. Numerical simulations of system (1.4) for 7 = 1.5.

4. Conclusion

In this paper, we consider a delayed diffusive predator-prey system with a functional
response increasing in both predator and prey densities. We mainly analyze the
Turing instability and Hopf bifurcation of coexisting equilibrium. We also give some
parameters that determining the property of Hopf bifurcation: bifurcation direction
and the stability of the bifurcating periodic solution. Compare with the model
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u(x,t) v(x,t)

0.8 0.8
0.6 0.7
0.4

0.2 4

0
1500

500 —— 10 500 - 10
e S ///
0 - 5 0 \(// 5
t -500 0 X t -500 0 x

Figure 5. Numerical simulations of system (1.4) for 7 = 2.

(1.3), diffusion induced Turing instability and spatial inhomogeneity bifurcating
period solution occur. In addition, time delay may induce instability and Hopf
bifurcation.
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